Realigning Our 21st Century Diet and Lifestyle With Our Hunter-gatherer Genetic Identity

Hussam Abuissa, MD, James H. O'Keefe Jr., MD, and Loren Cordain, PhD

Humans evolved during the Paleolithic period, from approximately 2.6 million to 10,000 years ago. Although the human genome has remained largely unchanged, our diet and lifestyle have become progressively more divergent from those of our ancient ancestors. These maladaptive changes began with the advent of the agricultural revolution approximately 10,000 years ago and have been accelerating in recent decades. Socially, we are a people of the 21st century, but genetically we remain citizens of the Paleolithic era.

The evolutionary collision of our ancient genome with the nutritional quality of recently introduced processed and synthetic foods underlies virtually all of the chronic diseases of Western civilization. Today, most of us dwell in mechanized urban settings, leading largely sedentary lives and eating a diet of highly processed synthetic foods. As a result, two-thirds of Americans are overweight or obese. The lifetime incidence of hypertension is astounding 90%, and insulin resistance/metabolic syndrome is present in up to 40% of middle-aged American adults (Figure 1).

The average total cholesterol level in adult Americans is approximately twice the physiologically normal level (Figure 1).

Cardiovascular disease remains the number one cause of death, accounting for 41% of all fatalities, and the prevalence of heart disease in the United States is projected to double in just the next 20 years. Despite remarkable pharmacological and technological advances, the pandemic of cardiovascular disease continues. At least for today, the genes we are born with are those that we will live and die with. Thus, the most practical solution for reducing the incidence of chronic degenerative diseases, such as atherosclerosis, is to realign our current maladaptive diet and lifestyle to simulate the milieu for which we are genetically designed.

Living organisms thrive best in the milieu and on the diet to which they were evolutionarily adapted; this is a fundamental axiom of biology. (continued on page 3)
All of the food consumed daily by our ancient ancestors had to be foraged or hunted from wild plants and animals in their natural world. In many respects, that Paleolithic world is gone forever, but insights gained from a wide array of disciplines are providing a clear picture of the ideal diet and lifestyle for humans.

The hunter-gatherer mode of life became extinct in its purely non-Westernized form in the 20th century. At the beginning of the 21st century, we are the first generation to have the genetic and scientific understanding to allow us to reconstruct the essence of that lifestyle and the means to afford it.

Historical and archaeological evidence shows hunter-gatherers generally to have been lean, fit, and largely free of signs and symptoms of chronic diseases, even in those individuals who managed to avoid premature death from infection, starvation, trauma, etc., and live into old age. When hunter-gatherer societies transitioned to an agricultural grain-based diet, their general health deteriorated. The average adult height was substantially shorter for both men and women who consumed cereals and starchy staples. Furthermore, studies of bones and teeth reveal that populations that changed to a grain-based diet had shorter life spans, higher childhood mortality, and a higher incidence of osteoporosis, rickets, and various other mineral- and vitamin-deficiency diseases.

This review outlines the essence of the hunter-gatherer lifestyle and diet and suggests practical steps to realign our modern milieu with our ancient genome in an effort to improve cardiovascular health, vigor, and longevity.

The Ideal Human Diet

Perhaps no scientific topic has generated more controversy and confusion in recent times than the question of the ideal human diet. This confusing issue is epitomized by the Atkins diet versus the Ornish diet. The Atkins diet is high in protein, high in saturated fats, and avoids nearly all carbohydrates. Conversely, the Ornish diet consists of 80% carbohydrates and minimized consumption of all animal protein and fats. Proponents of each diet insist that theirs is the answer to the American epidemic of obesity and cardiovascular disease; however, the advice of these diets is mutually exclusive and diametrically opposed (Table 1).

In truth, the ideal diet is neither of these extremes nor what many medical professionals now promote. In
a recently published review of approximately 150 studies of the link between diet and cardiovascular health, the authors concluded that 3 major dietary approaches have emerged as the most effective in preventing cardiovascular events:

1. Replacing saturated and trans-fats with monounsaturated and polyunsaturated fats;
2. Increasing consumption of omega-3 fats from either fish or plant sources, such as nuts and seeds;
3. Eating a diet containing large amounts of various fruits, vegetables, nuts, and whole grains while avoiding foods with a high glycemic load (a large amount of quickly digestible carbohydrates).

Despite common misconceptions, this report found no strong evidence for a link between the risk for cardiovascular disease and the intake of meat, cholesterol, or total fat. These broad characteristics are consistent with the diet of which Paleolithic humans evolved. This is the diet that our hunter-gatherer ancestors thrived on until the advent of the agricultural revolution. Through the millennia, our genome and physiology became adapted to this diet. The average human lifespan has almost doubled over the past century; however, this has been largely the result of the use of antibiotics; the availability of clean public water supply; reduced infant and maternal mortality; and less trauma, starvation, and other causes of premature death. In contrast, the prevalence of chronic diseases of civilization has increased over the past century, in part because of a marked decrease in premature death.

Real Food, Not Synthetic Food

Our remote ancestors consumed only natural and unprocessed food foraged and hunted from their environment. This subsistence strategy resulted in a diet based on lean protein that was also high in fiber, vitamins, minerals, antioxidants, and other beneficial phytochemicals (Table 2). Compared with the average modern American diet, the typical Paleolithic diet contained 2 to 3 times more fiber, 1.5 to 2.0 times more monounsaturated and polyunsaturated fats, 4 times more omega-3 fats, and 30% to 40% less saturated fat. The protein intake was 2 to 3 times higher, and the potassium intake was 5 to 4 times higher; however, the sodium intake was 4 to 5 times lower. Finally, the Paleolithic diet contained no refined sugars.
grains and sugars (except for seasonally available honey).

Clearly, the ongoing epidemic of cardiovascular disease is at least in part due to these striking discrepancies between the diet we are designed to eat and what we eat today. In growing season, abundant fruits, berries, and vegetables were consumed. The one variable on which nearly all nutrition experts agree is the need for an increased intake of fruits and vegetables in our modern diet. Also, the hunter-gatherer diet is high in beneficial phytochemicals and antioxidants, which renders multivitamin and mineral supplements superfluous.8

Caloric Intake:

Throughout most of human history, food consumption (energy intake) was obligatorily linked to food acquisition (energy output). Accordingly, our ancient ancestors expended more energy finding and obtaining food calories than do typical sedentary, Westernized citizens for whom there is virtually no connection between energy intake and energy expenditure.

Our craving for calorie-dense foods—such as fats, sweets, and starches—is the legacy of our Paleolithic ancestors, who sought these foods because they conferred positive survival value in an environment in which these food types were scarce. These cravings betray us in our modern world, where calorie-dense foods are abundant and inexpensive and most people die of caloric excess manifested as obesity, the metabolic syndrome, hypertension, and cardiovascular disease. Compounding the issue is the fact that our genome became adapted to an environment in which caloric intake was often sporadic and sometimes inadequate. This promoted efficient energy use and storage, commonly referred to as the thrifty gene hypothesis. Although this genetic adaptation (which results in storage of excess calories as intra-abdominal fat) provides a survival advantage in an environment of scarcity, it becomes a liability in the setting of long-term excessive caloric intake.

Although the key to weight loss is simply the daily consumption of fewer calories than are expended, it is easier to moderate caloric intake in a diet that has adequate quantities of protein and fat because of superior satiety compared with a high-carbohydrate, low-fat diet.8,15 A growing consensus indicates that a diet containing moderate amounts of beneficial types of fat and protein in addition to carbohydrates with a low glycemic load (non-starchy vegetables and fruits) in conjunction with daily exercise is the most effective way to achieve and maintain ideal body weight and prevent cardiovascular disease.8,16-20 This approach was the eating pattern and lifestyle of prehistoric humans.

Omega-3 Fats:

Polynsaturated fats are classified as omega-6 (generally proinflammatory) or omega-3 (anti-inflammatory with several other inherent cardioprotective effects). Omega-3 fats were abundant in the diet of our Paleolithic ancestors.8 In the natural world, the broad base of the food chain is composed of algae, which are ubiquitous in the sea, and grasses and leaves on land. The small amount of fat in algae, grasses, and leaves is rich in omega-3 fatty acids, which become more concentrated in larger animals through both the land and marine food chains, especially in fish and larger grazing animals. Today, meat from domesticated animals is low in omega-3 fats, because these animals are generally fed grain or corn, rather than grass.8 This and other issues have resulted in a much lower intake of omega-3 fats today compared with that of our remote ancestors.8,21

The correction of this omega-3 deficiency in the modern diet is a key step in improving cardiovascular health in our population.8 Prospective studies indicate that an increased intake of fat composed of omega-3 fatty acids from fish oils (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) will reduce cardiovascular risk by as much as 32% to 50% (Figure 2).22-23 Recently, for the first time, the American Heart Association recommended that a nutrient—the omega-3 fatty acids—be consumed as a supplement.24

The phospholipid layer of neuronal membranes of the brain are rich in omega-3 fats (~20%), especially DHA. This omega-3 fatty acid makes the cell membrane more elastic and is essential for optimal brain function. If a person is deficient in DHA, the mem-
brane replaces it with an omega-6 fatty acid called docosapentaenoic acid (DPA), which is almost identical to DHA, except for a tiny difference in molecular structure at n-6 that makes it vastly less flexible. This impacts subtle but critically important differences in neuronal membrane activity. Omega-3 deficiency has been associated with an increased risk for bipolar disorder, depression, stroke, dementia, and schizophrenia.

Monounsaturated Fats:

Monounsaturated fats made up approximately half of the total fat in the diets of most hunter-gatherers. Monounsaturated fats reduce cardiovascular risk, especially when they replace more easily digestible starchy foods and sugars. Nuts comprise a valuable source of monounsaturated fats and have been shown to be cardioprotective in at least six epidemiological stud-

The Problem With Vegetarianism

All evidence points to the fact that hunter-gatherers were omnivorous. Strictly vegetarian diets are difficult to follow and are not necessarily associated with better health. Many current vegetarians would be more appropriately labeled "breedarians." Modern vegetarian diets often rely heavily on processed carbohydrates, such as white rice, potatoes, and white flour and sugars. In Westernized societies, sugar intake has increased substantially over the past 2 centuries. In a recent study, investigators found that a high-glycemic-load diet is the most important (albeit inversely related) dietary predictor of HDL level. A high-glycemic-load diet predisposes a person
to the metabolic syndrome and cardiovascular disease and is one of the most atherogenic features of our modern eating pattern.

Can Meat Be Cardioprotective?

In comprehensive studies of diverse hunter-gatherer populations, investigators have found that these people typically derive 45% to 60% of their calories from animal foods. Although increased meat consumption in Western diets has been associated with increased cardiovascular risk, the hunter-gatherers were relatively free of the signs and symptoms of cardiovascular disease.

It is not the amount of meat eaten, but rather the composition of the meat and the cooking methods used that determine the health effects of this food. Accumulating scientific evidence indicates that meat consumption is not a risk for cardiovascular disease, but that this risk is secondary to the high levels of saturated fats that are typically found in the meat of most modern domesticated animals.

Figure 3

TOTAL CHOLESTEROL LEVELS FOR HUNTER-GATHERERS, WILD PRIMATES, AND WILD MAMMALS

<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Mean Total Cholesterol (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER-GATHERER</td>
<td></td>
</tr>
<tr>
<td>Humans:</td>
<td></td>
</tr>
<tr>
<td>Hazda</td>
<td></td>
</tr>
<tr>
<td>Inuit</td>
<td></td>
</tr>
<tr>
<td>Kung</td>
<td></td>
</tr>
<tr>
<td>Pygmy</td>
<td></td>
</tr>
<tr>
<td>San</td>
<td></td>
</tr>
<tr>
<td>Beboon</td>
<td></td>
</tr>
<tr>
<td>Howler monkey</td>
<td></td>
</tr>
<tr>
<td>Night monkey</td>
<td></td>
</tr>
<tr>
<td>WILD MAMMALS:</td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td></td>
</tr>
<tr>
<td>Boar</td>
<td></td>
</tr>
<tr>
<td>Peccary</td>
<td></td>
</tr>
<tr>
<td>Black rhinoceros</td>
<td></td>
</tr>
<tr>
<td>African elephant</td>
<td></td>
</tr>
<tr>
<td>MODERN HUMANS:</td>
<td></td>
</tr>
<tr>
<td>Adult American</td>
<td></td>
</tr>
</tbody>
</table>

Total cholesterol levels generally range from about 70 to 140 mg/dL (corresponding to low-density lipoprotein levels of about 35 to 70 mg/dL). The mean cholesterol levels of modern Westernized humans are almost twice these normal values.
increased markedly because of their ubiquitous presence in commercially prepared foods. These "trans-fats" (also referred to as hydrogenated or partially hydrogenated vegetable oils) are synthesized by the hydrogenation of the edible oils, which is typically done in the prepared food industry to prolong the shelf-life of commercially baked goods such as cookies, crackers, donuts, croissants, and processed snack foods. Trans-fatty acids are also found in shortenings, most margarines, and deep-fried foods, and recently in many brands of commercially available canola oils.

Trans-fats lower HDL levels, increase LDL levels, and increase the risk for both cardiovascular disease and cancer. Studies indicate that replacing trans-fatty acids (typically 2% of total daily calories in the American diet) with the same amount of natural unsaturated fatty acids would result in a large (50%) decrease in risk for coronary heart disease.

Beverages:

Our Paleolithic ancestors drank water almost exclusively of all other beverages. Recent data suggest that a generous water intake—5 or more glasses daily—is associated with a lower risk for coronary heart disease. Water, when consumed frequently, displaces calorie-dense beverages such as sugared sodas from the diet. It also provides adequate hydration and reduces blood viscosity better than other commonly ingested drinks. Hyperviscosity has been shown to impair capillary blood flow, which results in neurological manifestations and an increased risk for bleeding. Thrombotic complications can also occur in both arteries and veins and manifest as a stroke, myocardial infarction, deep vein thrombosis, or pulmonary embolism. Sugared sodas are the predominant types of beverages consumed in America today. These are calorie-dense, nutritionally barren drinks that have contributed to the rise in obesity and insulin resistance. Tea (Camellia sinensis) has been brewed for thousands of years as a favorite drink in several parts of the world. This beverage has been shown to be high in natural antioxidant phytochemicals (polyphenolic compounds). Drinking tea has been shown to reverse endothelial vasomotor dysfunction in people with coronary artery disease.

Hunter-gatherer Fitness

Our Paleolithic ancestors exerted themselves daily to secure their food and water and to protect themselves and their clans. Although modern technology has made physical exertion optional, it is still important to exercise as though our survival depended on it—and in a different way, it still does. We are genetically adapted to an extremely physically active lifestyle. A sedentary existence predisposes us to obesity, hypertension, metabolic syndrome, diabetes, and most types of cardiovascular disease, whereas regular exercise decreases the risk of developing all of these diseases. Even in times of caloric excess, hunter-gatherers avoided weight gain in part because they were extremely physically active. Studies of obesity consistently show that the best way to maintain weight loss (regardless of the type of diet used) is by daily physical exercise.

Our remote ancestors participated in various types of physical activity daily. They walked and ran 5 to 10 miles daily as they foraged and hunted for their food sources. They also lifted, carried, climbed, stretched, leaped, and did whatever else was necessary to secure their food, water, and protection while living in the wild. Days of heavy exertion were followed by days of recovery. In modern terms, these people cross-trained with aerobic, resistance, and flexibility exercises. According to recent data on physical activity, fitness programs that use various exercises are the most effective in preventing cardiovascular disease.

Summary

The hunter-gatherer diet and lifestyle are the ideal for which we remain genetically adapted. Although it is neither practical nor even possible to replicate all prehistoric living conditions today, these general characteristics should serve as a template to design and test effective interventions to reduce the incidence of degenerative cardiovascular diseases.

There are no CME questions for this special report.
References

tree of West Eurasian mtDNA: a synthesis of control-
region microsatellites and RFLPs. Am J Hum Genet.

2. Cordain L, Eaton SB, Sebastian A, et al. Origins and evolu-
tion of the Western diet: health implications for the 21st

3. Cordain L, Eades MR, Eades MD. Hyperinsulinemic dis-
cases of cardiovascular syndrome X. Comp Biochem Physiol.

4. Hegel KM, Carroll MD, Ogden CL, Johnson CL. Preva-

developing hypertension in middle-aged women and men:

6. Ford ES, Giles WH, Dietz WH. Prevalence of the meta-
bulic syndrome among US adults: findings from the third
National Health and Nutrition Examination Survey.

reported multiple cardiovascular disease risk factors among
2004;164:181–188.

8. Ford DS, Lewis RP, Pearson TA, Beller GA. Demographics and
 suppl Butte–488.

9. Lee RB, Dye J, eds. The Cambridge Encyclopedia of
Hunger andstarvation. Cambridge, UK: Cambridge Uni-

10. Eaton SB, Kontor M, Shostak M. Stone ages in the fast
lifestyle: chronic degenerative diseases in evolutionary perspec-

11. Eaton SB, Cordain L. Evolutionary health promotion: a
2002;34:119-123.

12. Cohen MN. The significance of long-term changes in
human dietary behavior. In: Harris M, Ross ER, eds. Food
and Evolution: Toward a Theory of Human Food Habits.

13. Cassidy CM. Nutrition and health in agriculturalists and
hunter-gatherers: a case study of two prehistoric populat-
ions. In: Jerome NW, Kendall RF, Pelle GL, eds. Nutri-
tional Anthropology: Contemporary Approaches in Diet &
117-145.

Haven, Conn: Yale University Press; 1989:138-175.

15. Cordain L, Winkins BA, Mann NJ. Fat and carbohydrate
and energy density of foods available to African hominids:
epidemiological implications for human diet development.

16. Adams BC, Dr. Adkins The New Diet Revolution. New

17. Ornish D. Dr. Ornish’s Program for Reversing Heart
Disease: The Only System Scientifically Proven to Reverse

18. He FB, Willett WC. Optimal diets for prevention of coro-

assessed: a review of dietary fat and carbohydrate on human lipoproteins

20. Murta A, Szabo Z, Kalay Z. Evolutionary perspectives on the
effects of dietary fat and carbohydrate on plasma lipopro-
9B:155–245.

21. Willett WC, Scampell MJ. Rebuilding the food pyramid.

22. Sacks FM, Katan MB. Randomized clinical trials on the
effects of dietary fat and carbohydrate on plasma lipopro-
9B:155–245.

of low-carbohydrate diets: a systematic review. JAMA.2003;
289:1873–1890.

Dietary source of long-chain polyunsaturated fatty acids dur-

25. Cordain L, Winkins BA, Fojo GT, Kester M, Bugo L,
Ly Fatty acid analysis of wild terrestrial tissues: evolution-
ary implications for reducing diet-related chronic disease.

26. O’Keefe JH Jr, Harris WS. Fraud in sustained implementation:
Omega-3 fatty acids come of age. Mayo Clin Proc. 2004;79:
607–614.

27. de Lorgeril M, Selmi F, Martino J, Delafont J,
Marfie D, Madrignan diet, traditional risk factors, and
the rate of cardiovascular complications after myocar-
dial infarction: final report of the Lyon Diet Heart Study.

ian Mediterranean diet on coronary artery disease in high risk
patients (India-Mediterranean Diet Heart Study): a randomized single-blind trial.
Lancet. 2002;360:
1455–1461.

29. Marchildi R, Barri F, Bomba E, et al. for the ISGS3-
Prevenre Intervention. Early protection against sudden death by
n3 polyunsaturated fatty acids after myocardial infarction:
time-course evaluation of the results of the Gruppo italiano per
Studios della Suppression in the Infarto Miocardico

30. Lernouw RN, King II, Mosaffarian D, Kuller LH, Tracy
P, Naussick DS. N–3 Polyunsaturated fatty acids, fatal
ischemic heart disease, and nonfatal myocardial infarction
in older adults the Cardiovascular Health Study, Am J Clin

31. Kris-Etherton PM, Harris WS, App JG, American Heart
Association Nutrition Committee, Food consumption, Sib oil,
omega-3 fatty acids, and cardiovascular disease published
companion appears in Circulation. 2003;107:5127–
27.

32. Carra I, Clemens M, de Jode J, Fovoros H, Bouchard JM.
Specific phospholipid fatty acid composition of brain
regions in mice effects of n–3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res.
2000;41:665–472.

33. Bouchard JM. Roles of ω-6 polyunsaturated fatty acids
References

34. Cordain L, Eaton SB, Miller JR, Mann N, Hill K. The pa-
ro-skeletal nature of hunter-gatherer diets: must-based, yet non-

35. Aschero A. Epidemiologic studies on dietary fat and coro-

36. Albert CM, Gaziano JM, Willett WC, Manson JE. Nut-
rition consumption and decreased risk of sudden cardiac death in the Physicians’ Health Study. Arch Intern Med 2002;162:
1382–1387.

38. Lowrie JC, Must MM, Lefere M, Greenway FL, Roed

39. Cordain L, Miller JR, Eaton SB, Mann N, Halak SH, Speth
JW. Plant-animal subsistence ratios and macronutrient energy
estimates in worldwide hunter-gatherer diets. Am J Clin Nutr

40. Cordain L, Eades MR, Eades MD. Hyperinsulinemic dis-
eases of civilization: more than just syndrome X. Comp

42. Leerd AR. Glycemic index and heart disease. Am J Clin

44. Liu S, Willett WC. Dietary glycemic load and atheroscler-

45. O’Dea K, Traisandes K, Chisolm K, Leyden H, Sinclair
AJ. Cholesterol-lowering effect of a low-fat diet containing
lean beef is reversed by the addition of beef fat. Am J Clin

46. Wolfe BM, Pich A. Replacement of carbohydrates by pro-
tein in a conventional-fat diet reduces cholesterol and triglyceride concentrations in healthy normoepidemic sub-

47. Parker B, Noakes M, Luttenbin C, Clifton P. Effect of a
high-protein, high-monounsaturated fat weight loss diet on
 glycemic control and lipid levels in type 2 diabetes. Diabetes
Care 2000;23:140–146.

48. Wolfe BM, Giovannetti PM. Short-term effects of substitut-
ing protein for carbohydrates in the diets of moderately

49. Lerman BK, Buleza RA, Erickson D, et al. Reduced

modifying in fat, carbohydrate, and fiber on carbohydrate and lipid metabolism in type 2 diabetes. J Am Diet Assoc

51. Tiwah B, Naha NH, Sawaya S, et al. High protein vs high carbohydrate hypotensive diet in treatment of obese non-
insulin-dependent and hyperinsulinemic subjects. Nutr Res

53. Verma SS, Beauthier B, Ramamurthy RA, et al. for the
TransInf Investigators. Dietary rates of total fat from deodorized rapeseed oil and plasma lipids and lipoproteins in healthy men: the TransInf Study. Br J Nutr 2001;85:
587–592.

54. Chan J, Krouwer SE, Blika GG, Lee JW, Fraser GE, Water,

long-term black na cornupture reverse endoehelial dys-
function in patients with coronary artery disease. Circula-
tion 2001;104:151–156.

59. Richardson CR, Kriska AM, Lanza PM, Heyward VA. Physical activity and mortality across cardiovascular disease

60. Park YW, Zhu S, Palaniyappan I, Helska S, Cameshren BR,
Hoyland SA. The metabolic syndrome prevalence and associated risk factor findings in the US population from the

61. Lindeman J, Lourhanala A, Manclhon H, et al. The
Finnish Diabetes Prevention Study (DP3); lifestyle inter-
vention and 3-year results on diet and physical activity. Diabetes Care 2003;26:3230–3236.

63. Wing RR. Physical activity in the treatment of the adult-
hood overweight and obesity: current evidence and research

64. Tansouk M, Ziltzmann M, Rimn BF, Willett WC, Stampfer MJ, Hu VB. Exercise type and intensity in rela-