The CD4–Th1 model for multiple sclerosis: a crucial re-appraisal

Hans Lassmann¹ and Richard M. Ransohoff²

¹Division of Neuroimmunology, Brain Research Institute, University of Vienna; Spitalgasse 4, A-1090 Wien, Austria
²Department of Neuroscience, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA

Multiple sclerosis (MS), an acquired spontaneous chronic inflammatory demyelinating disease of the human central nervous system (CNS) has features of autoimmunity to myelin, directed by CD4+ T cells, which are polarized to production of type I cytokines. Similarities between MS and models of Th1-driven brain inflammation led to assumptions that the two are equivalent and that models can be used to decipher MS and predict responses to therapy. However, over decades, numerous bits of data incompatible with a simple CD4–Th1 hypothesis have accumulated. They suggest that besides Th1 cells, other immunological mechanisms and a neurodegenerative component within the target tissue might contribute to the initiation, propagation and modification of this disease. Taken together, these issues prompt reconsideration of the use of pure CD4–Th1 models in favor of a view that MS is likely to be heterogeneous and might not be strictly autoimmune.

Multiple sclerosis (MS), the most common neurological disease affecting young adults in the Western world, is a chronic inflammatory disease of the central nervous system (CNS), resulting in the formation of focal plaques of demyelination in the brain and spinal cord [1] (Box 1). The cause of multiple sclerosis is unknown but it is widely believed to be an autoimmune disease, initiated by MHC class II-restricted CD4+ T lymphocytes, which are polarized to production of interferon-γ (IFN-γ), interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and lymphotoxin (i.e. they are Th1 cells). Several lines of evidence support the view of MS as a Th1-mediated autoimmune disease (designated for convenience the CD4–Th1 model for MS).

The CD4–Th1 model for MS makes several specific predictions

The specific predictions made by the CD4–Th1 model are:
(i) CD4+ T cells should be the predominant lymphocyte population in MS lesions. Other lymphocyte populations should be a minority accessory population.
(ii) CD4+ Th1 polarized T cells and their major effector cytokines, TNF-α and IFN-γ, should be pathogenic in MS lesions.
(iii) CD4+ Th2 polarized T cells should be regulatory or anti-inflammatory in MS lesions.
(iv) The CD4–Th1 model should encompass the observed variability in the pathological and clinical characteristics of MS.
(v) The process should be clearly autoimmune, that is, there should be overwhelming evidence that the CNS

Box 1. Essential clinical characteristics of multiple sclerosis (MS)

Clinical disease
MS is a chronic disease, which can develop in different forms [1]. The most frequent form is relapsing remitting MS, characterized by bouts of the disease, which are followed by complete or incomplete remissions. After several years this relapsing disease can transform into secondary progressive MS, defined by a slow and uninterrupted course of clinical deterioration. Twenty percent of MS patients suffer from primary progressive MS. In this variant, disease starts with slow progression from the onset and relapses or remissions are absent. A small proportion of MS patients develop atypically severe disease, which leads to massive disability or even death of the patients within months [45]. Variants of this fulminate disease course are Marburg’s type of acute MS (showing all typical features of chronic MS but with rapid disease evolution and more destructive lesions), Devic’s type of neuromyelitis optica (a disease with dominant or exclusive involvement of spinal cord and optic nerves) and Balo’s concentric sclerosis, which is characterized by the appearance of large demyelinated plaques with concentric layering of myelinated and demyelinated zones [42].

Genetic background
The genetic background of the patient to a large extent determines disease susceptibility [2]. Identical twins have a concordance of MS of 30%. Genomic screens disclosed that the susceptibility to develop MS is determined by multiple genes with low individual contribution. Candidate gene approaches revealed multiple possible candidates that determine disease susceptibility, severity or disease course. However, unequivocal evidence for an association with MS is so far only established for the human histocompatibility leukocyte antigen-D (HLA-D) region.

Imaging
The pathological alterations in the brain of MS patients can be monitored by magnetic resonance imaging (MRI) [53,54]. Conventional MRI techniques visualize the expanded extracellular space within the demyelinated plaques. With the use of a paramagnetic tracer (Gd-DTPA) blood–brain barrier damage can be seen, which reflects the change in the permeability of inflamed vessels. Gd-DTPA leakage is, thus, a good surrogate marker for active lesions. Diffuse brain injury outside plaques is documented with new imaging techniques and quantitative evaluation of signal abnormalities. Finally, the extent of neuronal and axonal damage is best visualized by magnetic resonance spectroscopy (MRS) by quantitative analysis of the concentration of N-acetyl aspartate.

Corresponding author: Hans Lassmann (hans.lassmann@univie.ac.at).

www.sciencedirect.com 1471-4906/$ - see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.it.2004.01.007
host organ was healthy before autoimmune attack by CD4–Th1-mediated mechanisms.

In this Opinion, we propose that none of these predictions fully withstands critical scrutiny in light of the neuro-pathological and clinical attributes of MS and findings from the widely studied animal model, experimental autoimmune encephalomyelitis (EAE) (Figure 1).

Evidence that MS might be mediated by autoimmune CD4\(^+\)–Th1 polarized T cells

Genetic studies show an association of MS susceptibility with genes in the MHC class II region [2]. Immune surveillance of the normal brain favors the infiltration of Th1 cells [3]. MS pathology resembles that found in EAE (the animal model of Th1-mediated brain inflammation) [4]. Both diseases have a similar cellular composition of inflammatory lesions, mainly consisting of T lymphocytes and activated macrophages, and a similar pattern of chemokine and chemokine receptor expression within the lesions, which are consistent with an inflammatory process driven by Th1 cytokines [5]. In some MS patients, immunodominant peptides of myelin basic protein (MBP) are complexed with DR2 molecules at sites of demyelination [6] and T-cell clones with receptors specific for MBP have been found in MS brain lesions [7]. Finally, therapeutic strategies, thought to induce a shift from Th1 to Th2 immune reactions, have shown beneficial effects in MS patients [8]. All these data suggest that MS develops in genetically susceptible individuals when autoimmune CD4–Th1 cells, possibly triggered by infection, invade the brain, are locally activated, and recruit and activate hematogenous macrophages and microglia cells, which destroy myelin sheaths and other tissue components through toxic effector molecules or in cooperation with
specific autoantibodies. However, many MS features are not reflected in Th1-mediated brain inflammation.

**CD4+ T cells are not dominant in MS lesions**

CD4+ T cells outnumber CD4+ lymphocytes in MS lesions in all stages of their development [9,10]. In addition, PCR analysis of T-cell receptors in MS lesions (so far restricted to two cases) revealed that CD8+ T cells are clonally expanded [11]. Hence, there is a prominent contribution of MHC class I-restricted T cells in MS brains, not only within lesions, but also in histologically ‘normal’ brain tissue. What is their function? Are they cytotoxic T lymphocytes (CTLs), which are involved in tissue injury, or regulatory cells, which limit inflammation and brain damage?

**CD8+ T cells can be pathogenic in models of immune-mediated demyelination of the CNS**

The model of Theiler’s murine encephalomyelitis virus-induced demyelinating disease, another model with similarities to MS, highlights a role for CD8+ T cells in clinical disease, demyelination and axonal injury. In this model, clinical disease and tissue injury depend on an antiviral immune response, mediated by CD8+ T cells [12]. Furthermore, passive transfer of autoimmune CD8+ T cells induces brain inflammation and destruction of antigen containing target cells [13–15]. Thus, CTLs can induce brain inflammation, demyelination and axonal injury. Is there evidence that this occurs in MS lesions?

There is no doubt that CD8+ T lymphocytes are abundant in MS lesions. In cases with aggressive disease, many of these cells express granzyme B, a cytotoxic activation marker [16]. MHC class I molecules are expressed in MS lesions on all different cell types, including glia and neurons [17]. CD8+ T cells are closely apposed with oligodendrocytes and axons in MS lesions and their cytotoxic granules are polarized towards the zone of T-cell contact with the target [18]. All these data suggest that CD8+ T lymphocytes can initiate brain inflammation and tissue injury in MS plaques. It remains, however, plausible that other CD8+ T cells in MS lesions are regulatory, being involved – as in EAE [16] – in downregulating inflammation.

**CD4+–Th1 polarized T cells in MS lesions might not be purely pathogenic**

CD4+ cells are also present in actively demyelinating MS lesions, primarily in perivascular spaces [10,11] and the meninges, but represent a minority of T cells in the nervous system parenchyma. There is no doubt that these cells can initiate the inflammatory process, activate effector microglia and macrophages and stimulate MHC upregulation in the CNS [19]. However, the same autoreactive CD4+ lymphocytes are also potentially neuroprotective [20], producing neurotrophins, such as brain derived neurotrophic factor (BDNF) [21]; further, cytokine neurotrophin receptors are expressed on glia cells and neurons in and near actively demyelinating MS lesions [22]. Class II-restricted cells, including CD4+CD25+ regulatory cells, can also inhibit encephalitogenic inflammation [23]. Could it be possible that, depending on the stage of the lesions, CD4 cells in MS also protect the nervous tissue from inflammation-induced injury?

**TNF-α and IFN-γ, the major effector cytokines of DTH responses, have partially protective roles in inflammatory demyelination**

The concept of Th1 reactions emanated from studying host responses to intracellular pathogens, in which TNF-α and IFN-γ are crucial effector molecules and deficits in their action cause susceptibility to infectious agents. Predictably, patients with genetic defects of IFN-γ receptors, IFN-dependent STAT (signal transducer and activator of transcription) proteins or IL-12 signaling pathways or those treated with TNF neutralizing agents, demonstrate increased susceptibility to mycobacterial infection [24,25]. Thus, in host defense, the CD4–Th1 response proceeds smoothly from appropriate danger signals, to polarized dendritic cells (DCs), to polarized Th1-committed CD4+ T cells, to the production of TNF-α and IFN-γ and the generation of delayed type hypersensitivity (DTH) lesions (Figure 1).

In clinical or experimental inflammatory demyelination, this seamless coordinated function of effector cells and molecules has not been apparent. Consistent reports indicate that IFN-γ is protective in rodent EAE [26–28]. Complementary results came from injecting IFN-γ or providing the cytokine by gene therapy-mediated delivery to the affected CNS, both of which ameliorated disease [29]. The reasons why IFN-γ reduces EAE severity are unclear [28,30] but might involve the inhibition of proliferation of pathogenetically relevant myeloid cell populations [31]. Further complexity in relating EAE with MS emerged when it was reported that injections of IFN-γ exacerbated MS [32].

Questions about the predictive value of EAE for MS treatments intensified with the unanticipated finding that TNF neutralization worsened MS disease activity [33]. Such a result was extremely surprising because TNF blockade had been uniformly efficacious in EAE and overexpression of TNF-α in the CNS induces demyelination and tissue damage [34]. Additional surprises have since emerged: TNF neutralizing agents provoked inflammatory demyelination de novo [35]. Full mechanistic accounts of the roles played by TNF-α and its receptors in inflammatory demyelination are not available. However, it is now clear that IFN-γ and TNF-α, the principal molecular effectors of type 1 immunity, have a far from simple part in inflammatory CNS demyelination.

**CD4+–Th2 polarized T cells are potentially pathogenic in EAE and MS**

Th1 (and Tc1) cells are believed to induce brain inflammation and Th2 cells are thought to be anti-inflammatory, supported by numerous detailed EAE studies [36]. In addition, patterns of chemokine receptor expression indicate a preferential homing of Th1 polarized cells into the CNS tissue [3]. However, the situation is complicated by a recent report that Th2 polarized T cells, directed against MBP, induce destructive brain inflammation in immunodeficient mice [37]. Interestingly, this model exhibited
Indirect experimental evidence might implicate a role for Th2 cells in inflammatory brain lesions. EAE, induced by immunization with myelin oligodendrocyte glycoprotein (MOG), is more severe in Brown Norway rats, which favor Th2 responses, and immunization with incomplete Freund’s adjuvant is equally or more effective than with complete Freund’s adjuvant [38,39]. Lesions are mainly located in the spinal cord and optic nerves, resembling Devic’s neuromyelitis optica and are characterized by mild T-cell infiltration and massive recruitment of granulocytes and eosinophils [39].

In MS, patterns of inflammation are in general consistent with a Th1–Th2-mediated immune response (see earlier). There are, however, exceptions. Devic’s neuromyelitis optica (NMO) is a demyelinating disease, characterized by severe destructive lesions in the spinal cord and optic nerves and a massive tissue infiltration indicative of a Th1–Th2-mediated immune response [40]. Neuropathological studies have clearly documented transitional forms of NMO and classical MS, which show features of both disease variants, indicating that the two are related. Although a possible role for Th2 cells in the initiation or the modulation of inflammatory brain lesions is at present far from being firmly established, these data indicate that immunomodulatory strategies, which interfere with T-cell polarization in MS patients, should be pursued with a critical and cautious mind.

The CD4–Th1 autoimmune model of MS does not account for the neurodegenerative component of MS. In addition to focal demyelinated plaques, MS tissues show profound diffuse damage, including massive atrophy of the white and gray matter and a widespread degeneration of nerve fibers and gliosis in uninvolved regions termed normal-appearing white matter (NAWM) [42]. These diffuse changes in part result from axonal degeneration in demyelinated plaques [43,44]. The transaction of axons within demyelinated plaques inevitably leads to secondary degeneration of the distal and proximal portions of the affected neuron [45]. Recent immunohistochemical studies on a large sample of MS cases revealed a profound heterogeneity in the structural patterns and mechanisms of demyelination. Four patterns of demyelination were found, which were heterogeneous between patient subgroups but homogenous in multiple lesions of the same patient. The four patterns were defined as: demyelination mediated by T cells and activated microglia or macrophages alone (pattern I), antibody and complement mediated demyelination (pattern II) [55], demyelination following hypoxia-like tissue injury (pattern III) [56] and extensive oligodendrocyte destruction at the plaques edges (pattern IV) [57].
closed BBB might protect this type of inflammation against immunosuppressive medications.

Concluding remarks
Most of the current immunological concepts on etiology, pathogenesis and therapy of MS have been developed on the basis of data obtained from EAE, induced by Th1 cells. Although this model has provided extremely valuable information about induction and control of autoimmunity, as well as on mechanisms of immune surveillance and brain inflammation, recent observations in MS patients have revealed a much more complex picture. These data suggest that many different T-cell populations can, in principle, be involved in the induction, propagation and modulation of the disease and that the same cells, which are potentially encephalitogenic, can also provide a proper environment for remyelination and repair. Thus, MS is a disease in which many different components of the immune system interact and their relative importance for the development of the lesions might depend on the stage of disease evolution, the genetic background of the patients and possibly also on concomitant environmental influences. Under these circumstances, it is not surprising that current strategies of immunotherapy, which address single mechanisms of immunoregulation or immune-mediated tissue damage, showed only limited, or no, beneficial effects.

Acknowledgements
This Review is based on a project, funded by the European Union (QLG3-CT-2002–00612) and by research supported by the US National Institutes of Health (NS32151; NS38967). We thank Richard Rudick, Joan Goverman and Monika Bradl for helpful comments during preparation of the manuscript.

References
11 Babbe, H. et al. (2000) Clonal expansion of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404
14 Sun, D. et al. (2001) Myelin antigen specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166, 7579–7587
15 Cabarrosas, J. et al. (2003) Effective and selective immune surveil-
24 Ottenhoff, T.H. et al. (2002) Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonel-
lae. Nat. Genet. 32, 97–105
26 Duong, T.T. et al. (1992) Effect of anti-interferon-γ and anti-
terleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomy-
27 Ferber, I.A. et al. (1996) Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalo-
28 Chu, C.Q. et al. (2000) Failure to suppress the expansion of the activated CD4 T cell population in interferon-γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 123–128
29 Furlan, R. et al. (2001) Intrathecal delivery of IFN-γ protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalo-
myelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J. Immunol. 167, 1821–1829
30 Willenborg, D.O. et al. (1999) IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol. 163, 5278–5286
33 The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group, (1999) TNF neutralization
43 Ferguson, B. et al. (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399