A pilot study of oral calcitriol (1,25-dihydroxyvitamin D3) for relapsing–remitting multiple sclerosis

D M Wingerchuk, J Lesaux, G P A Rice, M Kremenchutzky and G C Ebers

doi:10.1136/jnnp.2004.056499

Updated information and services can be found at:
http://jnnp.bmjjournals.com/cgi/content/full/76/9/1294

These include:

References
This article cites 21 articles, 10 of which can be accessed free at:
http://jnnp.bmjjournals.com/cgi/content/full/76/9/1294#BIBL

Rapid responses
You can respond to this article at:
http://jnnp.bmjjournals.com/cgi/eletter-submit/76/9/1294

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Drugs: central nervous system (not psychiatric) (240 articles)
Multiple sclerosis (258 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to Journal of Neurology, Neurosurgery, and Psychiatry go to:
http://www.bmjjournals.com/subscriptions/
A pilot study of oral calcitriol (1,25-dihydroxyvitamin D3) for relapsing–remitting multiple sclerosis

D M Wingerchuk, J Lesaux, G P A Rice, M Kremenchutzky, G C Ebers

MULTIPLE SCLEROSIS (MS) IS A PUTATIVE AUTOIMMUNE DISORDER FOR WHICH UNIDENTIFIED ENVIRONMENTAL EXPOSURES INFLUENCE DISEASE EMERGENCE. THE WORLDWIDE PREVALENCE OF MS INCREASES WITH GEOGRAPHICAL LATITUDE (GREATER PREVALENCE WITH INCREASING DISTANCE FROM THE EQUATOR) AND THIS GRADIENT PERSISTS IN SOME REGIONS EVEN AFTER CONTROLLING FOR INFLUENCES SUCH AS MIGRATION PATTERNS.1–4 EPIDEMIOLOGICAL AND ECOCLOGICAL STUDIES SHOW AN INVERSE ASSOCIATION BETWEEN SOLAR RADIATION EXPOSURE AND MS PREVALENCE OR MORTALITY.5–7

VITAMIN D REPRESENTS ONE POTENTIAL LINK TO EXPLAIN THESE FINDINGS. VITAMIN D IS GENERATED IN THE DERMAL SKIN LAYER AFTER EXPOSURE TO SUFFICIENT ULTRAVIOLET (UV) RADIATION.1 MOST UV IRRADIATION OCCURS NEAR THE EQUATOR. DURING WINTER MONTHS AT LATITUDES >45°, EVEN PROLONGED SUNLIGHT EXPOSURE IS INADEQUATE TO SUPPORT VITAMIN D SYNTHESIS, AND THE GENERAL POPULATION IS AT RISK FOR DEFICIENCY IN THOSE REGIONS.7–8 VITAMIN D DEFICIENCY OFTEN COEXISTS WITH ESTABLISHED MS AND ORAL SUPPLEMENTATION MAY BE ASSOCIATED WITH A LOWER RISK OF THE DISEASE.7–11 TOGETHER WITH A RECENT OBSERVATIONAL STUDY INVOLVING TYPE 1 DIABETES, THESE FINDINGS SUGGEST THAT VITAMIN D STATUS MAY INFLUENCE SUSCEPTIBILITY TO CERTAIN IMMUNE-MEDIATED DISEASES.11

MULTIPLE SCLEROSIS (MS) IS A PUTATIVE AUTOIMMUNE DISORDER FOR WHICH UNIDENTIFIED ENVIRONMENTAL EXPOSURES INFLUENCE DISEASE EMERGENCE. THE WORLDWIDE PREVALENCE OF MS INCREASES WITH GEOGRAPHICAL LATITUDE (GREATER PREVALENCE WITH INCREASING DISTANCE FROM THE EQUATOR) AND THIS GRADIENT PERSISTS IN SOME REGIONS EVEN AFTER CONTROLLING FOR INFLUENCES SUCH AS MIGRATION PATTERNS.1–4 EPIDEMIOLOGICAL AND ECOCLOGICAL STU

Multiple sclerosis (MS) is a putative autoimmune disorder for which unidentified environmental exposures influence disease emergence. The worldwide prevalence of MS increases with geographical latitude (greater prevalence with increasing distance from the equator) and this gradient persists in some regions even after controlling for influences such as migration patterns.1–4 Epidemiological and ecological studies show an inverse association between solar radiation exposure and MS prevalence or mortality.5–7 Vitamin D represents one potential link to explain these findings. Vitamin D is generated in the dermal skin layer after exposure to sufficient ultraviolet (UV) radiation.1 Most UV irradiation occurs near the equator. During winter months at latitudes >45°, even prolonged sunlight exposure is inadequate to support vitamin D synthesis, and the general population is at risk for deficiency in those regions.7–8 Vitamin D deficiency often coexists with established MS and oral supplementation may be associated with a lower risk of the disease.7–11 Together with a recent observational study involving type 1 diabetes, these findings suggest that vitamin D status may influence susceptibility to certain immune-mediated diseases.11
Calcitriol for relapsing-remitting MS

RESULTS

Nineteen patients were screened to obtain 15 enrollees (12 women). Four patients were excluded owing to baseline hypercalcaemia (n = 1) or election to begin available immunomodulatory drugs (n = 3). At study onset, mean age was 36.1 years (range 22 to 44) and mean disease duration was 6.3 years (range 1 to 13). Mean enrolment EDSS was 1.9 (median 2.0; range 0 to 4.0). One patient had two attacks during the preceding year and the remainder had one attack.

Safety/tolerability outcomes

All patients achieved the target calcitriol dose and there were no events of hypercalcaemia during the dose escalation phase. Adverse effects included headache (n = 3), constipation (n = 3), dizziness (n = 1), and paraesthesiae (n = 1). There were no instances of urinary dysfunction or symptomatic nephrolithiasis.

Thirteen patients completed the study and 11 were able to maintain the target calcitriol dose of 2.5 μg/d. Two patients had mild, asymptomatic hypercalcaemia (levels of 2.74 and 2.69 mmol/l; normal 2.12 to 2.62 mmol/l) which required temporary dose adjustment to 1.5 μg/d and 2.0 μg/d. After two to three weeks, both patients re-established the target dose without adverse effects.

Two patients withdrew because of symptomatic hypercalcaemia (serum calcium 3.45 and 3.35 mmol/l, respectively); headache and abdominal pain resolved after calcium levels normalised. Persistent dietary indiscretion was associated with both instances. One patient regularly used a mineral supplement providing >600 mg/d of calcium and the other did not follow dietary restrictions.

Laboratory results are summarised in table 1. Maximum serum calcium levels were reached in all patients at the target dose of 2.5 μg/d (mean (SD) time to maximum calcium level, 34.4 (7.5) weeks; range 24 to 48). All patients appeared compliant based upon serum calcium data.

MRI and clinical outcomes

At baseline, five of 15 scans (33%) showed at least one gadolinium enhancing lesion (median 0; range 0 to 3 lesions). Each of the 24 and 48 week brain MRI studies showed enhancing lesions in four of 14 patients (29%) (median 0; range 0 to 4 and 0 to 9 lesions, respectively). Three patients with enhancing lesions at baseline continued to show at least one gadolinium enhanced lesion on one or both scans during calcitriol treatment. Of the 10 patients with no enhancing lesions at baseline, three had a single enhancing lesion on one of the two studies done during calcitriol treatment; the others had negative scans for the entire study.

New T2 weighted lesions were detected in six of 14 scans (43%) at the 24 week study and in four of 14 (29%) at the 48 week study.

Safety/tolerability outcomes

Adverse effects included headache (n = 3), constipation (n = 3), dizziness (n = 1), and paraesthesiae (n = 1). There were no instances of urinary dysfunction or symptomatic nephrolithiasis.

Thirteen patients completed the study and 11 were able to maintain the target calcitriol dose of 2.5 μg/d. Two patients had mild, asymptomatic hypercalcaemia (levels of 2.74 and 2.69 mmol/l; normal 2.12 to 2.62 mmol/l) which required temporary dose adjustment to 1.5 μg/d and 2.0 μg/d. After two to three weeks, both patients re-established the target dose without adverse effects.

Two patients withdrew because of symptomatic hypercalcaemia (serum calcium 3.45 and 3.35 mmol/l, respectively); headache and abdominal pain resolved after calcium levels normalised. Persistent dietary indiscretion was associated with both instances. One patient regularly used a mineral supplement providing >600 mg/d of calcium and the other did not follow dietary restrictions.

Laboratory results are summarised in table 1. Maximum serum calcium levels were reached in all patients at the target dose of 2.5 μg/d (mean (SD) time to maximum calcium level, 34.4 (7.5) weeks; range 24 to 48). All patients appeared compliant based upon serum calcium data.

DISCUSSION

Calcitriol doses of up to 2.5 μg/d are safe and generally well tolerated for up to one year in diet compliant MS patients. Although this study was not designed to evaluate efficacy, the results suggest that disease aggravation is unlikely.

There may be multiple opportunities for vitamin D related intervention for demyelinating disease. Although calcitriol levels are normally tightly regulated, supraphysiological doses could provide immunological benefits for people with established MS, similar in concept to benefits observed in experimental allergic encephalomyelitis. On the other hand, 25-hydroxyvitamin D3 levels vary with seasonal and sunlight exposure (and may correlate with gadolinium enhancing lesion frequency); therefore, dietary vitamin D supplementation may play a role in disease prevention for those at higher risk for MS (with a family history of the disease) or very early treatment (after development of a clinically isolated syndrome). Supplementation with vitamin D (1000 IU/d) plus calcium (800 mg/d) resulted in alteration of the

Table 1

<table>
<thead>
<tr>
<th>Week</th>
<th>Serum calcium (mmol/l)</th>
<th>Serum phosphate (mmol/l)</th>
<th>Serum creatinine (μmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2.28 (0.07)</td>
<td>1.10 (0.13)</td>
<td>67.7 (12.5)</td>
</tr>
<tr>
<td>24</td>
<td>2.45 (0.12)**</td>
<td>1.19 (0.17)</td>
<td>67.5 (23.1)</td>
</tr>
<tr>
<td>48</td>
<td>2.38 (0.09)**</td>
<td>1.08 (0.13)</td>
<td>72.8 (18.7)</td>
</tr>
</tbody>
</table>

Values are mean (SD). **p<0.01 and *p<0.001 for serum calcium levels compared with baseline. Serum phosphate and creatinine levels were not significantly different from baseline values.

Figure 1

Study flow diagram.

Figure 2

Line plot of expanded disability status scale (EDSS) scores at baseline, at study completion, and at final post-study follow up.

Four patients (27%) experienced a total of five clinical relapses during the 48 week study and one attack was treated with corticosteroids. Three of the relapses occurred in two patients who had concurrently active MRI scans showing gadolinium enhancing lesions.

Four patients (27%) worsened by at least one EDSS point (three patients worsened by one point and one patient by two points) during the study, when comparing baseline with week 48 EDSS scores. The mean EDSS at the end of the study was 2.2 and the median EDSS change was 0 points (range −1.0 to +2.0).

After calcitriol was discontinued, 14 patients were evaluated in routine clinical follow up for 12 months or until they started another disease modifying agent. Nine exacerbations occurred in seven patients during mean follow up of 10 months (range 6 to 12 months). Mean EDSS score increased to 3.1 (range 1.5 to 6.0) and eight of 14 patients worsened by at least one point (fig 2). Three patients eventually started IFN-interferon treatment. Post-trial MRI studies were not routinely done.

Calcitriol doses of up to 2.5 μg/d are safe and generally well tolerated for up to one year in diet compliant MS patients. Although this study was not designed to evaluate efficacy, the results suggest that disease aggravation is unlikely.

There may be multiple opportunities for vitamin D related intervention for demyelinating disease. Although calcitriol levels are normally tightly regulated, supraphysiological doses could provide immunological benefits for people with established MS, similar in concept to benefits observed in experimental allergic encephalomyelitis. On the other hand, 25-hydroxyvitamin D3 levels vary with seasonal and sunlight exposure (and may correlate with gadolinium enhancing lesion frequency); therefore, dietary vitamin D supplementation may play a role in disease prevention for those at higher risk for MS (with a family history of the disease) or very early treatment (after development of a clinically isolated syndrome). Supplementation with vitamin D (1000 IU/d) plus calcium (800 mg/d) resulted in alteration of the

www.jnnp.com
cytokine profiles in MS patients. Whether supplementing dietary vitamin D (perhaps at higher doses than recommended to date) to ensure subsequent paracrine or autocrine formation of physiological levels of calcitriol is sufficient to affect established MS also warrants investigation.

The calcitriol dose used in this pilot study is substantial and may not be sustainable. Further investigations are needed to determine the optimal dose using safety, efficacy, and immunological criteria. Studies are warranted to compare calcitriol with analogues having a less hypercalcemic effect (alfacalcidol has been safely administered to MS patients for six months), or dietary supplementation of vitamin D, along with investigations designed to test vitamin D related mechanistic hypotheses.

ACKNOWLEDGEMENTS

We are grateful to Dr Colleen Hayes for helpful advice and to Dr Donald Lee for MRI assistance. The study was partially supported by the Multiple Sclerosis Society of Canada (grant R99-028).

Authors’ affiliations

D M Wingerchuk, Department of Neurology, Mayo Clinic, Scottsdale, Arizona, USA
J Lesaux, G P A Rice, M Kremenchutzky, Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
G C Ebers, Department of Clinical Neurology, University of Oxford, Oxford, UK

Competing interests: none declared

Correspondence to: Dr Dean M Wingerchuk, Mayo Clinic, Scottsdale, Arizona, USA; wingerchuk.dean@mayo.edu

Received 17 October 2004
In revised form Revised 29 November 2004
Accepted 4 January 2005

REFERENCES
