Enzyme kinetics hypothesis to explain the U-shaped risk curve for prostate cancer vs 25-hydroxyvitamin D in Nordic countries.

Reinhold Vieth
Department of Laboratory Medicine and Pathology, University of Toronto, and Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.

Corresponding Author
Dr. Reinhold Vieth
Pathology and Laboratory Medicine
Mount Sinai Hospital
600 University Ave
Toronto, Ontario, M5G 1X5
Phone: 416-586-5920 Fax: 416-586-8628
Email: rvieth@mts.inai.on.ca

To the editor: Tuohimaa et al have shown quite convincingly that there is a U-shaped curve for prostate cancer risk vs 25(OH)D levels in Norway, Finland, and Sweden (1). To explain this, they proposed a mechanism involving excessive catabolism of 1,25(OH)2D within prostate by 24-hydroxylase induced by 25(OH)D (1). However, this does not explain the paradox of why the minimal risk of prostate cancer would occur with 25(OH)D levels that are average for Sweden (1), a country suffering what may be the highest rate of prostate cancer mortality in the world (2).

I would like to offer a hypothesis that refines the explanation of Tuohimaa et al (1). Basic to this hypothesis is the fact that the enzymes of the vitamin D system function below their Km values in vivo (3;4). Thus, when 25(OH)D levels fall, the ratio between 25(OH)D-1-hydroxylase and 25(OH)D-24-hydroxylase must go up to reestablish set-point levels of 1,25(OH)2D produced within tissues like the prostate. Endocrine production of 1,25(OH)2D by the kidney can reestablish the setpoint quickly because there, the enzymes are regulated by PTH, calcium, and phosphate (4;5). However, at the prostate, adaptation to a decline in 25(OH)D is probably much slower, because so far as we know, the net output of 1,25(OH)2D is determined only by 25(OH)D supply, and by the self-adjusting balance between 25(OH)D-1-hydroxylase and 25(OH)D-24-hydroxylase.

When 25(OH)D is increased acutely in the rat, renal production of 1,25(OH)2D transiently overshoots its setpoint (3;4). It follows from this that, if 25(OH)D declines, there is a similar phase where 1,25(OH)2D undershoots its setpoint. Figure 1 illustrates this hypothesis. Winter at high latitudes produces a prolonged, gradual decline in 25(OH)D levels, and during this decline, autocrine 1,25(OH)2D cannot be maintained at its long-term setpoint.

According to this hypothesis, high 25(OH)D concentrations are not problematic per se. Instead, it is the process of declining 25(OH)D concentrations that contributes to increased risk of prostate cancer. Tuohimaa et al reported large seasonal differences in 25(OH)D levels (1). Those men having the highest summertime 25(OH)D levels should be expected to exhibit the greatest decline during the winter phase of each year. Men with higher summer 25(OH)D levels would suffer a more severe sub-set-point phase of prostate-generated 1,25(OH)2D. Annual cycles of prolonged incremental inadequacy of tissue 1,25(OH)2D levels could increase risk prostate cancer, and account for the U-shaped risk relationship.

This hypothesis predicts that the U-shaped curve of prostate cancer risk is distinct to high latitudes. It predicts that in regions where average 25(OH)D concentrations are higher and more constant throughout the year, greater risk of prostate cancer is associated only with low 25(OH)D levels. Humans are optimized through evolution to be a tropical species. Annual cycles of fluctuating 25(OH)D concentrations are not physiologic and may increase risk of prostate cancer.
Figure 1. **Hypothesized effect of a decline in circulating 25(OH)D (dash lines) on tissue levels of 1,25(OH)2D (dotted lines).** Since physiologic 25(OH)D concentrations are below the Km values of 1-hydroxylase, any decrease in 25(OH)D concentration results in fall in 1,25(OH)2D below its setpoint (black arrows) until the ratio of 1-hydroxylase to 24-hydroxylase increases to compensate. With a prolonged decline, as during long winters, prostate-generated 1,25(OH)2D cannot fully return to its setpoint until the 25(OH)D stops falling.

Reference List

