Vitamin B12, folic acid, and the nervous system
Edward Reynolds

There are many reasons for reviewing the neurology of vitamin-B12 and folic-acid deficiencies together, including the intimate relation between the metabolism of the two vitamins, their morphologically indistinguishable megaloblastic anaemias, and their overlapping neuropsychiatric syndromes and neuropathology, including their related inborn errors of metabolism. Folates and vitamin B12 have fundamental roles in CNS function at all ages, especially the methionine-synthase mediated conversion of homocysteine to methionine, which is essential for nucleotide synthesis and genomic and non-genomic methylation. Folic acid and vitamin B12 may have roles in the prevention of disorders of CNS development, mood disorders, and dementias, including Alzheimer’s disease and vascular dementia in elderly people.

Historical background
In the late 19th century, Leichtenstern’ and Lichtheim’ wrote the earliest accounts of the neurological associations of megaloblastic anaemia; they described typical lesions in the posterior and lateral columns of the spinal cord of which Russell and colleagues’ soon coined the term “subacute combined degeneration of the cord” (SCD). In the first third of the 20th century, before the availability of liver therapy, the neuropsychiatry and neuropathology of megaloblastic anaemia was thoroughly documented by many authors.24 They recognised that the nervous-system complications could be very varied and included peripheral-nerve and psychiatric disorders as well as the classic SCD and that there was commonly substantial dissociation between the haematological and neuropsychiatric symptoms, either of which could precede the other. In the absence of treatment, nearly all patients with megaloblastic anaemia eventually developed some nervous-system involvement before death. Before the discovery of vitamin B12 or folic acid, the separation of megaloblastic anaemias had not begun and most were regarded as “pernicious anaemia”, the diagnosis of which was erroneously assumed to be caused solely by deficiency of vitamin B12 and not of folic acid.25

In the final third of the 20th century, these deeply held misconceptions were slowly eroded with the use of vitamin B12 and folate assays and other techniques to assess patients with neuropsychiatric disorders with and without megaloblastic anaemia26 and were reinforced by the introduction of homocysteine assays in the 1990s.27 Such is the interest now in the role of folates, vitamin B12, and homocysteine in brain metabolism and function at all ages, especially in relation to nervous-system development, repair, mood, ageing, cognitive function, and dementia,12–21 that some have questioned whether folic acid ever had any harmful effects on the nervous system;22 another exaggerated swing of the pendulum.23

Vitamin B12 and folate metabolism
Reviews of the structure, binding, absorption, transport, metabolism, function, and interaction of vitamin B12 and folates, and the polymorphisms of folate-related enzymes can be found elsewhere.12,13,17,21,24–27 A key interaction is that between vitamin B12 and folate in the synthesis of methionine from homocysteine by methionine synthase, in which both 5-methyl-tetrahydrofolate and methyl-vitamin-B12 are cofactors (figure 1), a reaction that can be inhibited by nitrous oxide. The folate cycle, which synthesises methyl groups, is essential for many genomic and non-genomic methylation reactions, via S-adenosylmethionine and, indirectly, for the synthesis of purines and thymidine and, therefore, of nucleotides, DNA, and RNA.

Neurology of vitamin-B12 deficiency
Kinnier Wilson wrote the best review of the older detailed description of the overlapping syndromes of peripheral neuropathy, SCD, autonomic dysfunction, optic atrophy, mood and behaviour changes, psychosis, memory impairment, and cognitive decline.5 Recent studies have concentrated on early diagnosis and treatment based on the modern techniques for the separation of the megaloblastic anaemias.

Patients may present to haematologists and physicians with megaloblastic anaemia or to neurologists and psychiatrists with predominantly nervous-system
In a prospective study, my colleagues and I described 50 patients with vitamin-B12-deficient megaloblastic anaemia admitted to medical wards (table 1). The commonest finding was peripheral neuropathy; SCD was uncommon. About a quarter of patients had either cognitive impairment or an affective disorder but a third had no detectable nervous-system involvement. In two-thirds the cause of vitamin-B12 deficiency was pernicious anaemia.

Healton and co-workers retrospectively identified 369 patients with low serum vitamin-B12 concentrations at two New York hospitals over 17 years. 50% had neurological symptoms or signs or both. Some of these patients had disorders that were thought to be unrelated to the deficiency (eg, Alzheimer’s disease, stroke), which suggests an overall incidence of 40% with related nervous system involvement. Within this group, nearly a fifth had no evidence of either anaemia or macrocytosis; 25% had peripheral neuropathy and 11% SCD, but an additional 40% had mild sensory or autonomic symptoms or signs of possible peripheral-nerve or cord origin. SCD has been described with disorders of vitamin-B12 binders, sometimes with normal or high serum concentrations of vitamin B12.

Patients with cord or peripheral-nerve syndromes invariably present with symmetrical distal sensory symptoms and signs usually beginning in the feet, spreading to the hands, and accompanied by varying degrees of ataxia. The commonest neurological signs are diminished vibration sense and proprioception in the legs and can include impaired distal cutaneous sensation. Limb reflexes may be exaggerated, diminished, or absent depending on the relative involvement of the cord. Lateral column signs of a spastic paraparesis may occur, accompanied by autonomic bladder, bowel, or sexual symptoms. The differentiation of the sensory symptoms and signs of peripheral-nerve involvement from those related to pathology in the posterior columns of the cord can be difficult. Peripheral neuropathy may be the only neurological syndrome, but if cord signs are present there is invariably some electrical evidence of a predominantly axonal neuropathy.

Mental symptoms in patients presenting to haematologists and physicians are commonly but not always accompanied by peripheral-nerve or cord signs. In cases presenting to neurologists or psychiatrists with psychiatric syndromes this association seems to be less common. Any combination of neurological and psychiatric syndrome is possible in addition to clinically isolated syndromes.

Recent studies confirm the frequent dissociation of nervous system and haematological signs noted in the early research. Healton and co-workers found a significant inverse correlation between the degree of anaemia and the severity of neurological involvement and this was independent of the duration of symptoms. Patients without anaemia or macrocytosis tend to have the most severe nervous-system involvement. The reasons for this finding are unclear—they are not related to serum concentrations of vitamin B12, but might be related to higher serum folate concentrations.

Diagnosis

Neurological disorders due to vitamin-B12 deficiency typically occur in both sexes between age 40 and 90 years with a peak at age 60–70 years. A few patients can present before age 40 years. These disorders are usually symmetrical and progressive, but the evolution can be variable and uneven in rate. The diagnosis is usually clear in the presence of typical neuropsychiatric syndromes associated with megalo-
blastic anaemia or macrocytosis and a low serum concentration of vitamin B12. Difficulties are encountered in the absence of anaemia or macrocytosis, if the serum vitamin-B12 concentration is equivocal, a raised plasma homocysteine or methylmalonic acid concentration confirms the presence of a significant deficiency.12,20,27

In patients presenting with peripheral-nerve or cord syndromes the differential diagnosis may rarely include diabetic or alcoholic neuropathies, paraneoplastic syndromes, cervical spondylosis, neurosyphilis, HIV-related neurological disorders, and nitrous-oxide abuse.6,11,12

Nitrous-oxide abuse
A myeloneuropathy indistinguishable from SCD occurs after chronic recreational or occupational exposure to nitrous oxide, usually in dental or hospital personnel. Layzer19 described 15 patients in 1978, and Savage and Lindenbaum37 reviewed a further 15 by 1995. As in SCD, the variable clinical picture can include neuropsychial and mental changes.

Single or repeated exposure to nitrous oxide during surgical procedures has also been suspected to precipitate neurological complications in several patients with underlying vitamin-B12 deficiency.40

Nitrous oxide rapidly and irreversibly inactivates methionine synthase, which is vitamin-B12 dependent,4 and megaloblastic changes in the bone marrow can be detected after 8–24 h of continuous exposure during surgery.40–44 Intermittent abuse requires several months to cause neuropsychiatric disturbances. Only a few patients have any haematological abnormality and most have normal serum vitamin-B12 concentrations.32,39

Multiple sclerosis and vitamin-B12 deficiency
Rarely a first episode of multiple sclerosis with prominent symmetrical posterior column sensory symptoms can be confused with vitamin-B12 deficiency. A few patients with undoubted multiple sclerosis also have vitamin-B12-deficient megaloblastic anaemia or macrocytosis.39 The latter may be detected at any stage in the clinical progression of multiple sclerosis, including at onset. Patients with multiple sclerosis without anaemia but very mild degrees of macrocytosis or borderline low serum vitamin-B12 concentrations are more common,40–44 some of whom have high plasma homocysteine.45,46

The age of these patients is typical of multiple sclerosis (ie, young adults), which is unusual for vitamin-B12 deficiency. The cause of the deficiency is usually unclear. Few patients have pernicious anaemia. As is typical in multiple sclerosis but surprising in vitamin-B12 deficiency these patients do not have peripheral neuropathy.45,46 The nature of the relation between multiple sclerosis and vitamin-B12 deficiency is also unclear.47 Is the association the result of overlapping autoimmune disorders? Does the deficiency reflect an increased demand for vitamin B12 for myelin repair? Or is there a more direct causal relation?

Neurology of folic-acid deficiency
The first reports of megaloblastic anaemia due to folate deficiency associated with spinal-cord, peripheral-nerve, and mental disorders appeared in the mid-1960s.51,52 These were soon followed by accounts of folate-responsive neuropsychiatric disorders in patients deficient in folate with or without anaemia or macrocytosis.53–56

The reported neuropsychiatric effects of folate deficiency are remarkably similar to those described for vitamin-B12 deficiency. Shorvon and colleagues57 compared the neuropsychiatric complications of megaloblastic anaemia presenting with either folate or vitamin-B12 deficiency to haematologists or physicians. The incidence of nervous system involvement was similar occurring in about two-thirds of each series (table 1). About a quarter of each group had cognitive decline. However, peripheral neuropathy was twice as common in vitamin-B12 deficiency than in folate deficiency. By contrast, depression was more than twice as common in folate deficiency than in vitamin B12 deficiency. SCD was uncommon in vitamin B12 deficiency, but it was not seen at all in 34 patients with folate deficiency. Pincus57 reviewed 25 patients with SCD caused by folate deficiency and concluded five were convincing and 20 probable. Electrical studies of peripheral-nerve function in folate deficiency confirm that the predominantly sensory axonal neuropathy is similar to that described for vitamin-B12 deficiency.58,59

Neuropsychiatric disorders without anaemia or macrocytosis
About a third of patients with vitamin-B12 or folate deficiency severe enough to produce megaloblastic anaemia do not have neuropsychiatric disorders when first seen.49 Conversely, about a fifth of patients presenting with nervous-system disorders caused by vitamin-B12 deficiency and about a quarter of patients with folate-responsive neuropsychiatric syndromes do not have anaemia or macrocytosis.45,50

Up to a third of psychiatric and especially psychogeriatric admissions have low serum or red-cell folate concentrations, mostly without anaemia or macrocytosis.5,20,44,62 The corresponding incidence of low serum vitamin-B12 concentrations is usually up to 5%20,28,30 but between 10% and 20% in elderly patients.62 Folate deficiency has been consistently associated with evidence of depression41,20,28,29,31,34,46,53,54 and cognitive decline,53,20,28,30,44,51,53 whereas low vitamin-B12 concentrations have been mainly associated with cognitive impairment.29,31,34,47,50

The cause of folate deficiency has been variously ascribed to poor diet, chronic illness, drugs (eg,
barbiturates, alcohol, malabsorption, increased demand, or unknown.25,61,67 One reason for the apparently high incidence of folate deficiency in elderly people is that folate concentrations in serum and CSF fall and plasma homocysteine rises with age,66-71 perhaps contributing to the ageing process.72,73

Neuropsychological studies have found general and specific impairments of intellectual function—including attention, episodic and visuospatial memory, and abstract reasoning—that were attributed to folate deficiency.12,73 In the Kungsholmen (Stockholm) community ageing and dementia project, the pattern of cognitive dysfunction resulting from folate deficiency is said to resemble that in normal ageing—ie, impairment in tasks that involve little structure, are unfamiliar and attention demanding, and involve complex processing of information.72,74

There has been considerable debate about the significance of folate deficiency without anaemia or macrocytosis in the presence of psychiatric illness. For those who have continued to doubt the existence of neuropsychiatric symptoms of folate deficiency it has been all too easy to assume that the deficiency is secondary to the mental illness for dietary reasons, especially as apathy, withdrawal, and anorexia are common symptoms in depression and dementia. However, nutritional studies have not confirmed this oversimplistic interpretation,53,67 and others have pointed out that even when folate deficiency is secondary to mental illness it is an aggravating factor that leads to a vicious circle of decline.66,68,69 Furthermore, impaired motivation and social withdrawal due to deficiency are some of the most folate-responsive symptoms.25,53,55,56 In the past 15 years, evidence of a more direct causal link between folate metabolism and some depressions and dementias has been reinforced by studies of homocysteine metabolism.

Folate, homocysteine, depression, dementia, and ageing

Hyperhomocysteinaemia has long been identified as a risk factor for vascular disease and the lowering of homocysteine concentrations by treatment with folic acid, or possibly vitamin B12 and vitamin B6, might reduce the risk of both cardiovascular and cerebrovascular disease.73,76 Long-term prophylactic studies with folic acid are therefore underway.77

After the earlier reports of an association between folate deficiency, depression, and dementia several mainly community or cross-sectional studies have suggested that hyperhomocysteinaemia is a risk factor for depression and especially dementia, including Alzheimer’s disease and vascular dementia.5,19-21,23,51,52 Among homocysteine studies reviewed by Morris,9 only two did not show a link with dementia. The large prospective Framingham community study confirmed that a high plasma homocysteine concentration doubled the risk of developing either Alzheimer’s disease or other dementias.78 Likewise a Swedish community study suggested low concentrations of serum folate or vitamin B12 doubled the risk of Alzheimer’s disease.99 A prospective Italian population-based study confirmed that high plasma homocysteine and low serum folate concentrations were independent predictors of dementia and Alzheimer’s disease, whereas the association with vitamin B12 was not significant.99 In a retrospective study of the survivors of the Scottish Mental Surveys of 1932, which included childhood IQ, plasma homocysteine concentration accounted for 7-8% of the variance in cognitive performance.100

There is substantial overlap between Alzheimer’s disease and vascular dementia, and the separation of these two diseases from each other and from other dementias is not easy in life even with the most sophisticated techniques.12 Therefore neuropathological studies are of particular importance. In a case-control study of 164 patients with Alzheimer’s disease, 76 of which were confirmed neuropathologically, Alzheimer’s disease was significantly associated with high plasma homocysteine and low serum folate and vitamin B12.95 Higher plasma homocysteine was associated with a more rapid atrophy of the medial temporal lobes over 3 years. In 12 patients, high homocysteine was also significantly associated with confirmed vascular dementia.96 In people without dementia, plasma homocysteine was inversely related to MRI measures of hippocampal and cortical volume.94 However, poor cognitive ability associated with high homocysteine concentrations was independent of structural brain changes on MRI.95 In a prospective study of 30 nuns from the same environmental and nutritional background who died at age 78–101 years, half had neuropathological confirmation of Alzheimer’s disease. Of 18 nutritional factors examined, only serum folate was correlated with atrophy of the neocortex, especially in the 15 nuns with Alzheimer’s disease but also in those with minimal atherosclerosis and no infarcts.96

Raised plasma homocysteine concentrations have been observed in up to 30% of patients with severe depression.20,50,67-81 Bottiglieri and colleagues87 have described a biological subgroup of depressed patients with high plasma homocysteine concentrations, folate deficiency, and impaired monoamine neurotransmitter metabolism. A meta-analysis has confirmed the association of the thermolabile variant of 5-methyltetrahydrofolate reductase with depression.82 There is also interest in the association of low serum and high plasma homocysteine concentrations with the “negative” symptoms of schizophrenia.83,84

Folic acid and epilepsy

Folate deficiency induced by phenytoin or barbiturates is commonly associated with mental changes, especially depression, apathy, psychomotor retardation, and cognitive decline.84,85 Folate deficiency in patients with epilepsy is now much less common with the availability of newer antiepileptic drugs.
Treatment of 26 patients with epilepsy who had folate deficiency with 5 mg folic acid daily for 1–3 years resulted in improved drive, initiative, alertness, concentration, mood, and sociability in most and an increase in seizure frequency in some. Controlled trials of folate therapy for up to 3 months produced conflicting results, but there is abundant experimental evidence that folate derivatives have excitatory properties, especially when the efficient blood–brain barrier mechanism for the vitamin is circumvented. In laboratory animals intravenous sodium folate will only induce seizures in very large doses; but if the blood–brain barrier is damaged locally by trauma or a heat lesion, the dose required for an epileptogenic effect is much lower. If the blood–brain barrier is circumvented by intraventricular or intracortical administration all folate derivatives are highly convulsant. Furthermore, the vitamin enhances the kindling model of epilepsy and can even be used to kindle seizures directly. How folates lead to excitation is unknown, but they may do so by blocking or reversing GABA-mediated inhibition. Epileptic phenomena produced by folates resemble those induced by disinhibitory compounds such as bicuculline, penicillin, or picrotoxin.

The risk of aggravating epilepsy seizures in patients is small because the blood–brain barrier limits entry of folic acid but probably increases with larger doses over longer times. The vitamin can also lower blood phenytoin concentrations.

Treatment issues

Vitamin-B12 deficiency

Two-thirds of patients with vitamin-B12 deficiency and neurological complications are still functionally independent at the time of diagnosis, and only about 10% are severely disabled. The severity of the neurological disorder correlates with the duration of symptoms but also inversely with the haemoglobin concentration. The treatment of neuropsychiatric disorders is empirical, based mainly on haematological experience rather than neurological study. Although remission of megaloblastosis can be induced within weeks by small doses of parenteral vitamin B12, the haematological principle is to saturate body stores of the vitamin so that if the injections are abandoned, as occurs in 10–20% of patients, it will take longer for relapse to occur. Therefore, weekly injections of 1000 µg of hydroxycobalamin or cyanocobalamin have been recommended for the first 3 months followed by a maintenance injection every 3 months. The same principle has been applied in the absence of anaemia or macrocytosis. Whether this is the most appropriate regimen for neuropsychiatric manifestations of vitamin-B12 deficiency is unknown. Claims that the nervous system requires larger doses for longer periods than the blood have not been adequately studied or confirmed.

Published experience suggests that sensory symptoms begin to improve more quickly than motor symptoms, within the first 6 weeks. No improvement within 3 months may reinforce doubts about the significance of a low serum vitamin-B12 concentration in relation to the neurological disorder. The duration and degree of neurological recovery is correlated with the duration of symptoms and the severity of disability before treatment and therefore early diagnosis and treatment is imperative. In a large series, just less than 50% of patients made a complete recovery. About 90% of patients can expect at least 50% improvement in disability and up to 10% may be left with moderate to severe disability. Increasing age may raise the risk of residual disability.

Folic acid in vitamin-B12 deficiency

The 1945–50 experience indicates that treatment of patients with vitamin-B12-deficiency with folic acid is inappropriate because it may precipitate or aggravate neurological complications or allow them to progress by masking the anaemia (figure 2). Larger doses of folic acid for longer periods are more likely to lead to neurological progression. Savage and Lindenbaum reviewed 38 cases of vitamin-B12 deficiency treated with less than 1 mg folic acid, which had little haematological effect. Only six patients had neurological deterioration, but remarkably they had been treated for much longer than the remaining cases, illustrating the importance of duration of treatment in relation to the nervous system.

![Figure 2: Neurological and haematological relapse patterns in patients with pernicious anaemia treated with folic acid](neurology.thelancet.com)
Folic-acid deficiency

Some of the treatment issues are similar to those for vitamin-B12 deficiency, others are unique to folic acid. More patients with neuropsychiatric complications of folate deficiency present without anaemia or macrocytosis than occurs with vitamin-B12 deficiency, probably because body folate stores are more rapidly depleted by dietary and other mechanisms than those of vitamin B12.23 Low red-cell folate, especially if accompanied by high plasma concentrations of homocysteine, is a better guide to the degree and significance of deficiency than serum folate.23,60 Considering that a third of patients with folic or vitamin B12 deficiency severe enough to produce anaemia have no immediate nervous-system involvement,29 the significance of folate deficiency (or vitamin-B12 deficiency) in the presence of neuropsychiatric disorders is not always clear, especially in the elderly with depression or dementia.15,28,60 However, if this deficiency, whether primary or secondary, is not already affecting the nervous system it is highly likely to do so if left untreated.15,23,60

As with vitamin B12, the response to folate treatment is slow over many months, at least in part because of the efficient blood–brain barrier mechanism for this vitamin, which limits entry, perhaps because of its excitatory properties.23,60,103,104,107 Treatment should be for at least 6 months, but some improvement should be detected within 3 months. Again, the response and the degree of residual disability will be related to the duration and severity of nervous-system complications before treatment.

In patients with depression, folate deficiency is associated with a poorer response to standard antidepressant treatment.41,109 Several controlled trials for up to 1 year have confirmed an effect of folates on mood, cognitive function, and social recovery either directly or in addition to psychotropic treatment in psychiatric patients (table 2).110–114 Which folate formulation is best for the nervous system is unknown—ie, folic acid, folinic acid, or perhaps methyl folate, the transport form for the nervous system is unknown—ie, folic acid, before treatment.23,60

Disorders of vitamin-B12 and folate metabolism in infancy and childhood

Reviews of the many different inherited or acquired disorders of the absorption, transport, or metabolism of either vitamin are available.24,128,129 The neurological features vary with the age of presentation (panel).110 Haematological involvement is also variable or absent, as in adults with deficiencies.

Table 2: Controlled clinical trials of folates in neuropsychiatric disorders

<table>
<thead>
<tr>
<th>Patients</th>
<th>N</th>
<th>Trial design</th>
<th>outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botzet et al 111</td>
<td>Depression, folate deficiency</td>
<td>24</td>
<td>Folic acid 15 mg daily vs placebo; 4 months</td>
</tr>
<tr>
<td>Coppen et al 112</td>
<td>Manic depression, taking lithium</td>
<td>102</td>
<td>Folic acid 200 μg daily vs placebo; 1 year</td>
</tr>
<tr>
<td>Godfrey et al 113</td>
<td>Depression, schizophrenia, red-cell folate <200 μg/L, on standard psychotropic medication</td>
<td>41</td>
<td>Methyl folate 15 mg daily vs placebo; 6 months</td>
</tr>
<tr>
<td>Passeri et al 114</td>
<td>Elderly depression with moderate dementia</td>
<td>96</td>
<td>Methyl folate 50 mg daily vs trazadone 100 mg daily; 8 weeks</td>
</tr>
<tr>
<td>Coppen, Bailey 115</td>
<td>Depression, taking fluoxetine</td>
<td>127</td>
<td>Folic acid 500 μg daily vs placebo; 10 weeks</td>
</tr>
</tbody>
</table>

Nervous system development

Neural-tube defects

Inadequate maternal folate intake and status is one of several well-established factors that can increase the risk of neural-tube defects, especially spina bifida and anencephaly.14,110,111,112 Impaired vitamin-B12 status and high plasma homocysteine are also suspected to be additional or related risk factors.113,114 Periconceptional preventive treatment with 400 μg folic acid significantly reduces the risk of such defects but at least a third of neural-tube defects are not preventable with the vitamin.115,116 The mechanisms of the preventive action of folic acid are uncertain but possibly relate to methionine and nucleotide biosynthesis and to genetic vulnerability resulting in part from several common polymorphisms of folate-dependent enzymes involved in the folate cycle.14,17

Some countries, including the USA, Canada, and Chile have introduced mandatory fortification of flour, resulting in significant reductions in neural-tube defects but also a higher intake of folic acid than predicted.123–126 Others, including the UK, have not done so due to concerns about the masking of vitamin-B12 deficiency in the elderly.127 The debate about the most effective public-health policy continues.118

Disorders of vitamin-B12 and folate metabolism

Epilepsy.23 There is some evidence that folates can improve mood and mental function in the absence of a deficiency state and that the psychological response may be related to serum or red-cell folate concentrations.16,160 An additional rare side-effect of excessive doses is sleeplessness, overactivity, arousal, and even hypomania, as can occur with any anti-depressant and has been noted with the closely related metabolite, S-adenosylmethionine.115,116
A new syndrome of idiopathic cerebral folate deficiency has recently been described by Ramaekers and co-workers, perhaps due to high-affinity blocking autoantibodies to membrane-bound folate receptors on the choroid plexus.

Metabolic mechanisms

Dissociation

An issue that has puzzled many for a century is the lack of association between the haematological and neuropsychiatric manifestations of vitamin-B12 or folate deficiencies. This dissociation has led to repeated suggestions that the nervous-system disorders must have a different mechanism to the megaloblastic anaemia. To some extent, the dissociation is illusory, reinforced by the relatively early modern diagnosis of these disorders. In the first third of the 20th century, before any treatment was available, patients would eventually progress at different rates to nearly 100% association between anaemia and neuropsychiatric disorder. Furthermore, the dissociation is not unique to vitamin-B12 and folate deficiency but seems common to all general metabolic disorders that also affect the nervous system. For example, Wilson’s disease may present either to a neurologist or hepatologist with predominant cerebral or hepatic involvement; likewise hypothyroidism may present to an endocrinologist, neurologist, or psychiatrist. There are several possible reasons for these divergences, including the highly specialised structure, environment, and function of the nervous system in comparison to other organs, but they need not and usually do not imply any fundamental difference in the metabolic basis of the neural manifestations.

Folic acid and vitamin-B12 associations

The inverse correlation between the degree of anaemia and of neurological disability in vitamin-B12 deficiency might be linked to the effect of folic acid on the blood and nervous system in the presence of vitamin-B12 deficiency. In the presence of vitamin-B12 deficiency, folic acid is harmful to the nervous system but can improve the anaemia. Some enthusiasts of folic-acid fortification of food have doubted the adverse effect of folic acid on the nervous system on the grounds that it was not proven by a controlled trial; however, no controlled trial has been done to prove benefit of vitamin B12. These enthusiasts accept, however, that folic acid may improve the anaemia thus “masking” and delaying the diagnosis of vitamin-B12 deficiency, allowing the neurological disorder to progress. None of these views accurately reflect what was reported in the late 1940s and early 1950s. Careful review of that research shows that after giving folic acid to treat “pernicious anaemia” there was sometimes brief temporary symptomatic neurological improvement before the more florid and sometimes explosive deterioration, and after the obvious but suboptimal haematological improvement there was commonly a later insidious haematological relapse. A similar number of patients have neurological and haematological relapse, although often dissociated (figure 2). In other words, both the nervous system and the blood may show improvement and relapse to different degrees and at different rates, which may in turn reflect profound differences in structure, function, and cellular turnover in the two tissues.

Patients with neurological complications of vitamin-B12 deficiency have significantly higher serum folate concentrations than those without such CNS disorders. The inverse correlation between anaemia and neurological disability in vitamin-B12 deficiency may reflect a more harmful effect of folic acid on the nervous system or greater masking effect on the blood. In fruit bats deficient in vitamin B12, pretreatment with folates speeds up the onset of nitrous-oxide induced SCD.

Folate cycle, homocysteine, methylation, DNA, and epigenetic mechanisms

The key to the metabolic understanding of both the neurology and haematology of vitamin-B12 and folate deficiency is the synthesis of methionine from homocysteine by methionine synthase in which both 5-methyl-tetrahydrofolate and vitamin B12 act as cofactors (figure 1). Failures in the folate cycle and the supply of methyl groups or in the availability of vitamin B12 will have similar and overlapping consequences on both blood and nervous system.
The megaloblastic anaemia in either deficiency state is due to impairment of DNA synthesis, integrity, and transcription, associated with failures in the synthesis of purines and especially thymidine. In vitamin-B12 deficiency, especially pernicious anaemia, there is a block in the utilisation of methyl folate, commonly leading to a rise in plasma folate, the so-called methyl-folate trap; in folate deficiency there is a failure of delivery of methyl folate. Either mechanism leads to morphologically indistinguishable megaloblastic anaemia.

I have suggested that similar mechanisms may apply to the neurological disorders in these two deficiency states. However, the nervous system is also much more complex and hierarchical than the haemopoietic system and includes metabolic pathways that have little or no role in the blood (eg, in relation to myelin or mood). Nor should we assume that all neuropsychiatric complications have the same metabolic basis. There is much interest and speculation in this topic but most of it does now relate to the folate cycle and its involvement in nucleotide and DNA synthesis, to the homocysteine-methionine cycle and its involvement in numerous methylation reactions through the methyl donor, S-adenosylmethionine, including the methylation of DNA, which plays a vital part in gene expression and other epigenetic mechanisms. The role of homocysteine in vascular and neurotoxic mechanisms is also a subject of current research in stroke, vascular dementia, and Alzheimer’s disease.

An important model is that of nitrous oxide, which in man can produce megaloblastic changes in bone marrow within hours of anaesthesia and the full range of neuropsychiatric complications within weeks or months of abuse, and which has been studied in several species, including monkeys, pigs, rats, and fruit bats. By oxidising the cobalt atom of vitamin B12, nitrous oxide mimics vitamin-B12 deficiency, rapidly inactivating methionine synthase (figure 1). Methionine protects against nitrous oxide induced SCD implying that methylation processes are important in this disorder, as is supported by results of studies of demyelination in inborn disorders of remethylation. I suggest that the euphoriant laughing-gas effect of nitrous oxide in man is due to the rapid raising of methyl-folate concentrations in the nervous system, consequent upon the almost instantaneous inactivation of vitamin-B12.

Table 3 summarises postulated mechanisms not only for the neuropsychiatric complications of vitamin-B12 and folic-acid deficiency but also for the possible protective effect of folate in some disorders not primarily due to deficiency. Prophyllactic folic acid can reduce the incidence of neural-tube defects in the early embryonic period, even in the absence of folate deficiency. Recently Iskandar and colleagues reported that folic acid significantly improved the regrowth of sensory axons in a spinal cord regeneration model and improved neurological recovery from spinal cord contusion injury in rats. They suggest that folic acid can influence repair mechanisms in the adult nervous system as well as the developing nervous system. Folates seem to be of fundamental importance in brain growth, differentiation, development, repair, mood, cognition, and ageing. These functions and their breakdown in folate and vitamin-B12 deficiency are probably primarily mediated through nucleotide synthesis, DNA integrity and transcription, and epigenetic mechanisms, including gene expression, relating to DNA methylation. As in megaloblastosis, these mechanisms are probably involved in most if not all the neurological complications of deficiencies of vitamin B12 and folic acid—a kind of “megaloblastosis” of the nervous system. However, in addition there is widespread failure of non-genomic methylation involving potentially over 100 S-adenosylmethionine-mediated methylation reactions in numerous neural pathways. Possible examples are myelin basic protein and membrane phospholipids, which may perhaps contribute to demyelination, and monoamines, the turnover of which is increased by both folic acid and S-adenosylmethionine, and which are implicated in depression. Furthermore, there is some experimental evidence that homocysteine, in addition to being implicated in vascular disease, can induce DNA damage in the CNS. It is therefore of interest in relation to ageing, cognitive decline, and various forms of dementia, including vascular and Alzheimer’s disease, that serum and CSF folate concentrations fall and serum homocysteine concentrations rise with age. Some authors also propose that homocysteine-related impairment of glutathione metabolism and oxidative stress, or impaired DNA methylation and associated epigenetic mechanisms, may increase amyloid-β-peptide production and toxicity, for example in Alzheimer’s disease.

<table>
<thead>
<tr>
<th>Clinical implications of vitamin-B12 or folate deficiency*</th>
<th>Possible metabolic mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryo, fetus infant, and child</td>
<td>Impaired DNA synthesis and transcription, impaired genomic methylation and epigenetic mechanisms, homocysteine-mediated DNA damage</td>
</tr>
<tr>
<td>Disorders of CNS growth and development</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>As above and impaired non-genomic methylation (eg, myelin proteins, phospholipids)</td>
</tr>
<tr>
<td>SCD or neurophathy</td>
<td>Impaired non-genomic methylation (eg, turnover of monoamines)</td>
</tr>
<tr>
<td>Depression or psychiatric disorders</td>
<td></td>
</tr>
<tr>
<td>Old age</td>
<td>All the above mechanisms including DNA synthesis, genomic and non-genomic methylation, and homocysteine/metabolite neurotoxicity, failure of repair mechanisms</td>
</tr>
<tr>
<td>Brain ageing, cognitive decline, dementia</td>
<td></td>
</tr>
<tr>
<td>Other Cerebrovascular disease and stroke Alzheimer’s disease</td>
<td>Homocysteine-related vascular mechanisms</td>
</tr>
<tr>
<td></td>
<td>All the above mechanisms and oxidative stress, impaired glutathione metabolism, and increased amyloid-β peptide</td>
</tr>
</tbody>
</table>

*In some disorders (eg, AD or stroke) the deficiency may be secondary to the underlying neuropsychiatric disorder.
are additionally compromised by dietary factors, including some polymorphisms of folate and vitamin-B12 dependent enzymes, especially if the latter factors, including metabolic disorders, such as malabsorption, or neurological damage in vitamin-B12 deficiency is of the methylmalonyl-succinyl CoA pathway contributes to neurological damage in vitamin-B12 deficiency, including some dementias.

Vulnerability to the above mechanisms will be increased in relation to both the severity and duration of either deficiency, in the presence of predisposing genetic factors, including some polymorphisms of folate and vitamin-B12 dependent enzymes, especially if the latter are additionally compromised by dietary factors (nutrigenomics), and in the presence of associated metabolic disorders, such as malabsorption, or pharmacological stress—eg, folate antagonists.

Conclusions

Vitamin-B12 and folic-acid deficiency and related inborn errors of metabolism may result in similar megaloblastic anaemias and overlapping neuropsychiatric complications. In the early stages there is often dissociation between the neuropsychiatric and haematological manifestations, as occurs in other general metabolic disorders that affect the CNS. The occurrence of CNS complications is influenced by the duration as well as the severity of either deficiency, by predisposing genetic factors, including polymorphisms of folate or vitamin-B12 dependent enzymes, and by any associated metabolic disorders. The administration of folic acid in the presence of vitamin-B12 deficiency may be harmful to the nervous system, after brief temporary improvement, and ultimately harmful to the blood, after more striking but suboptimal temporary improvement. In the CNS, as in the blood, failure or blocking of the supply of methyl folate will result in impaired purine, thymidine, nucleotide, and DNA synthesis, as well as disruption of DNA transcription, methylation, gene expression, and other epigenetic mechanisms affecting tissue growth, differentiation, and repair. There is now substantial interest in the role of folic acid, vitamin-B12, and related pathways in nervous-system function and disease at all ages and the potential use of the vitamins, especially folic acid, in the prophylaxis of disorders of CNS development, mood, and cognitive decline, including some dementias.

Activation of NMDA receptors by homocysteine or its oxidation metabolites may have some neuropsychiatric implications. Whether the involvement of the methylmalonyl-succinyl CoA pathway contributes to neurological damage in vitamin-B12 deficiency is unresolved.

References for this review were identified through searches of PubMed most recently done on June 1, 2006, and of the authors’ files from 1966. The search terms were “vitamin B12”, “folic acid”, “folate”, “nervous system”, “neuropathy”, “dementia”, “epilepsy”, “multiple sclerosis”, “nitrous oxide”. Relevant textbooks were also used. The final reference list was generated on the basis of originality and relevance to each of the subtopics reviewed.

Search strategy and selection criteria

Conflicts of interest

I have no conflicts of interest. I have been actively involved in research of this topic since 1965 and have received research grants from the UK Medical Research Council and Bioresearch (Milan).

Goodwin JS, Goodwin JM, Garry PJ. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA 1983; 249: 2971–27.

