Inflammation in venous disease

P. Zamboni, S. Lanzara, F. Mascoli, A. Caggiati, A. Liboni

International Angiology; Oct 2008; 27, 5; ProQuest Science Journals

pg. 361

REVIEW

Inflammation in venous disease

P. ZAMBONI 1, S. LANZARA 1, F. MASCOLI 1, A. CAGGIATI 2, A. LIBONI 1

1Department of Surgery, Vascular Disease Center, University of Ferrara, Ferrara, Italy
2Department of Anatomy, University of Rome, Rome, Italy

Chronic venous disease (CVD), mainly due to venous reflux or, sometimes, to venous outflow obstruction, produces a microcirculatory overload leading to the impairment of venous drainage. Venous drainage depends primarily on a major hemodynamic parameter called transmural pressure (TMP). TMP is increased in patients affected by CVD, leading to impaired tissue drainage, and, consequently, facilitating the beginning of the inflammatory cascade. Increased TMP determines red blood cell extravasation and either dermal hemosiderin deposits or iron laden macrophages. Iron deposits are readily visible in the legs of all patients affected by severe CVD. Local iron overload could generate free radicals or activate a proteolytic hyperactivity of metalloproteinases (MMPs) and/or downregulate tissue inhibitors of MMPs. These negative effects are particularly evident in carriers of the common HFE gene’s mutations C282Y and H63D, because intracellular iron deposits of mutated macrophages have less stability than those of the wild type, inducing a significant oxidative stress. It has been demonstrated that such genetic variants increase the risk of ulcers and advance the age of ulcer onset, respectively. The iron-dependent vision of inflammation in CVD poses the way to new therapeutic strategies including the deliberate induction of iron deficiency as a treatment modality for non-healing and/or recurrent venous leg ulcers. The inflammatory cascade in CVD shares several aspects with that activated in the course of multiple sclerosis, an inflammatory and neurodegenerative disease of unknown origin in which the impairment of cerebral venous outflow mechanisms has been recently demonstrated. [Int Angiol 2008;27:361-9]

Key words: Veins - Varicose ulcer - Iron overload - Inflammation - Multiple sclerosis.

Impaired venous drainage of the lower extremities, mainly due to venous reflux or, sometimes, to venous outflow obstruction, determines a cascade of pathologic events clinically graded by the clinical class (C) of the CEAP classification of chronic venous disease (CVD). Varicose veins is the more frequent clinical sign, class C2; when edema complicates varicose veins, the clinical picture is graded as C3 and when pigmentation, lipodermatosclerosis and other skin changes occur they are classified as C4. A small, but significant, number of the affected patients will develop venous ulcers, whose overall prevalence in Western countries is between 1% and 2% with an estimated cost only for medication of about $1 billion/year in the United States and of 14% of the National Health Service (NHS) costs in the United Kingdom. Healed ulcer is graded as C5 and active ulcer as C6.

Venous function of the lower limbs is a difficult entity to quantify. Many tests have been developed in an attempt to separate normal from abnormal function, including ambulatory venous pressure (AVP), foot volume, photoplethysmography and air plethysmography. Unfortunately, none of these methods can completely separate patients and limbs by clinical severity of the disease. The decrease in venous pressure occurring during exercise represents the functional reserve of the venous system of the lower limbs and closely correlates with the clinical class of chronic venous insufficiency. Although some overlap exists between AVP values obtained in either healthy or insufficient veins of the lower limbs, such a measure is widely considered the gold standard in the evaluation of venous function.

Another limitation of AVP is represented by its invasiveness: we believe that an ideal test should be non invasive and easily repeatable. For this reason, in clinical practice air plethysmography became more and more popular.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Finally, duplex scanning and ultrasonographic techniques permit the exact localization of the venous segments affected by reflux, obstruction and/or the combination of both patterns that lead to microcircular overload and impaired tissue drainage.16-19

Hemodynamic physiopathology of venous drainage

Drainage of tissues is achieved by both venous and lymphatic systems. Venous drainage depends primarily on a major hemodynamic parameter called transmural pressure (TMP). TMP regulation is essential to tissue life. It eliminates catabolites that are toxic to cells and indirectly allows the surge of arterial blood. It plays a role in balancing the liquid compartments. Venous insufficiency from lack of drainage produces an excess of TMP. It leads to cellular suffering from accumulation of toxic metabolites and ischemia from circulatory slowdown. It also increases the volume of the interstitial and cellular liquid compartment. Clinically, it results in such subjective symptoms as edema, hypodermis, necrosis, and ulceration. There are multiple causes of excessive TMP, but they can be classified into two main groups: 1) too high venous pressure, and 2) too low external pressure (EP).19, 20

Transmural pressure

TMP (Figure 1) is the key to the hemodynamic drainage mechanism. It is the differential value between two opposite pressures. One is the so-called EP that presses on the external side of the vessel wall. The other is the so-called internal pressure or lateral pressure (IP) that presses the internal side of the vessel wall. TMP, oncotic pressure, and permeability of the capillaries constitute the triad that determines the exchanges between the intra- and extravascular compartments. When IP of the capillary is low and/or extracapillary pressure is high, TMP is low and favorable to drainage, and vice versa. The venous system cannot modify EP, but it can modify IP. Thus, the venous system must continually ensure an optimal TMP for drainage by maintaining a low venous pressure.

When venous pressure increases, TMP increases so that liquids and metabolic wastes from the tissues cannot pass into circulation. Obstacles to the passage of liquids can cause edemas. Intratissue accumulation of toxic metabolites associated with capillary flow slowdown are the key mechanisms possibly leading to the beginning of the inflammatory cascade.

The iron-dependent inflammatory cascade

Impairment of venous hemodynamics, as well as microcirculatory overload with increased TMP, is a necessary, but not sufficient, element for explaining the progression of the disease to the point of a skin lesion.

For such reason, in the past 20 years, a number of adjunctive factors have been investigated to understand the etiology of venous ulceration, but none of them completely explained the entire process. In 1982, Browse et al.21 observed a pericapillary fibrin deposition and speculated that cuffs act as barrier to oxygen diffusion and nutrients, resulting in epidermal cell death. However, these deficiencies in nutrient flow or oxygen diffusion have never been demonstrated. The fibrin cuff may be more properly considered to be a scaffold for tissue repairative process in the course of venous hypertension. The cuff contains fibrin, but also laminin, fibronectin, tenascin and types I and III collagen, encircling the dilated capillary vein.22 The decline of the fibrin cuff theory led to the investigation of other factors emphasizing inflam-
Figure 2—Transmission electron microscopy showing dilated capillary in a condition of chronic venous stasis, with sludging of RBC (the cell signaled by G). The endothelial cells can be recognized by the letter E. In this condition, RBC extravasation is a constant feature, leading to extravascular hemolysis and consequent hemosiderin deposits. (Magnification ×2000).

Inflammatory mechanism as amplifiers of the insufficient venous drainage. Recent studies have demonstrated a pivotal role for tissue iron accumulation in inducing and maintaining inflammation in CVD. Finally, in the course of severe venous stasis and/or venous leg ulcers, elevated gene expression of several families of matrix metalloproteinases (MMPs) and reduced expression of tissue inhibitors of MMPs (TIMPs) have been demonstrated. Such unregulated MMP proteolytic activity is commonly considered the final executioner of a pathogenetic chain leading to matrix disruption and ulcer development. This event together with the interstitial migration of macrophages has been shown to be a fundamental component of the inflammatory cascade activated in the matrix in the course of CVD.

Iron deposits in CVD cause readily visible brownish dermal areas which sometimes precede, but always surround, ulcers. The origin of increased leg iron stores is the red blood cell (RBC) diapedesis during significant venous stasis (Figure 2). RBCs are degraded by the interstitial macrophages with the released iron incorporated into ferritin. Over time, with increasing overload of iron, the structure of ferritin changes to hemosiderin. Ackerman et al. in 1988 found a 20-fold higher average of concentration of iron in lower limbs affected by venous ulcers as compared to normal limbs. (Perls staining 50×).

Figure 3—Iron dependent inflammation in venous disease: stasis and increased transmural pressure both facilitate RBC extravasation and migration in the extracellular matrix. This leads to extracellular hemosiderin and release of free iron (Q), immediately inactivated and stored in ferritin-hemosiderin protein system (3) in order to avoid generation of free radicals. Increased iron deposits are potent chemoattractants inducing adhesion molecules expression on the endothelial cell surface (4), and the consequent chain of capture rolling, adhesion, and transmigration of white cells (5), mainly by lymphocytes and monocytes. The latter in the matrix becomes macrophage taking up in turn iron (6).
pared to the upper arm of the same subjects. The phenomenon of leg hemosiderin deposits seems to be significant for the entire body, because our group found such protein even in the urine of patients affected by severe CVD and venous ulcers.

Increased iron stores and interstitial protein extravasation are potent chemoattractants and presumably represent the initial underlying chronic inflammatory signal responsible for white blood cell recruitment and migration in the matrix (Figures 3, 4). In 1988, Cicerodi Smith et al. observed leukocytes trapped in the venous microcirculation secondary to venous hypertension. They speculated that the release of toxic metabolites would lead to tissue damage and ulcer formation. This work paved the way to the investigation of the relationship between CVD and inflammation.

The mechanism of white cell migration in the subcutaneous matrix was further elucidated by studies of the expression of adhesion molecules in a model of venous hypertension. Several studies confirmed the expression of these molecules including ICAM, VCAM and selectins. Such adhesion molecules block circulating white cells on the vein wall and facilitate transmigration into the tissue. The predominant cells migrating into the extracellular matrix are macrophages and T-lymphocytes. Macrophages take up iron accumulated in the tissue and store it in intracellular ferritin-like structures. Intracellular iron overload of iron in the tissue could potentially be dangerous for the generation of free radicals (reactive oxygen species [ROS]) due to possible release of free iron from deposits. Despite the fact that a reliable ROS assessment is not currently available in the clinical setting, due to their short half life, this hypothesis was further investigated by measuring iron concentration in ulcer exudates. Wenk et al. found increased iron levels in exudates from chronic leg ulcers as compared to acute wounds and, more recently, Yeoh-Elerton et al. confirmed this finding. Both authors observed further evidence of ROS activation by measuring significant concentrations of metabolites from oxidative stress.

The final step of the pathogenetic chain leading to matrix disruption and ulcer development involves over-expressions of MMPs that are not substantially balanced by their physiologic tissue inhibitors (TIMPs). MMPs cause a substrate specific degradation of matrix components, including collagen, elastin and laminin. Unrestricted MMP activity can lead to matrix breakdown and ulcer onset. Some experiments demonstrated that local iron overload may induce MMP hyperactivation through the so-called MMP iron driven pathway. Iron release from tissue stores and ROS production are known to be adequate stimuli for MMP production. In our lab, we confirmed the hyperactivation of MMP9, one of the proteases involved in matrix disruption.

Iron-driven inflammation in chronic venous disease and susceptibility genes for venous ulcer complication

The main criticism to the iron hypothesis in venous ulcer development is based on the usual efficiency of the ferritin-ferric oxidase system in controlling free iron release. For instance, such a defensive mechanism is certainly activated in the course of cutaneous hemosiderosis. This kind of skin pigmentation is frequently observed in the skin of the hands of the elderly or readily visible in patients affected by liver hemochromatosis. One could ask why such deposits are capable of causing nothing more than a mild dermal atrophy, whereas iron stores in CVD legs could evolve to tissue disruption. The answer to this objection is in the chronic inflammatory environment of the leg affected by severe CVD. CVD determines a chronic inflammatory state in the skin with edema and trapped leukocytes, protein extravasation, cytokine cascade activation, extensive tissue remodeling with lipodermatosclerosis and hyper-expression of MMPs. Regional iron overload becomes a substantial part of the chronic inflammatory process in CVD and thus is absolutely different from sporadic iron deposition.

A further defensive mechanism in response only to iron overload and inflammation is hepcidin, a peptide of 25 amino acids secreted by the liver. Hepcidin binds to ferroportin, the main iron exporter present on the surface of macrophages. After binding, ferroportin is internalized and degraded, leading to decreased export of cellular iron. The post-translational regulation of ferroportin by hepcidin may thus complete the homeostatic loop: iron and interleukin 6, an inflam-
Figure 5—Assessment of risk of ulceration by comparing the prevalence of ulcer in a group of severe CVD cases, curving or not carrying the HFE-C282Y variant. The calculated ulcer risk in the entire cohort of CVD including primary and post-thrombotic cases, although certainly appreciable, did not yield statistical significance. In contrast, by sub-setting 199 cases affected by primary CVD, the risk increased by almost five times when the C282Y variant was present.

In addition to the iron defensive mechanisms, a shared criticism is that local iron overload is present in the entire cohort of CVD patients and is not an exclusive finding in those destined to ulcer onset. It remains to be explained why iron overload causes lesions in some individuals, whereas it does not in others. In an attempt to understand this patient to patient difference, we investigated the role of hemochromatosis gene (HFE) gene mutations in venous leg ulcers. The HFE mutation, with the C282Y and H63D variants, is the most commonly recognized genetic defect in iron metabolism. The population, especially those of Northern European descent, frequently presents C282Y and H63D heterozygous mutations and subjects showing these genetic variants are generally considered asymptomatic carriers.

From a cohort of 980 consecutive patients affected by severe CVD (CEAP clinical classes C4-C6), we selected 238 cases with the exclusion of any other comorbidity factor potentially involved in wound etiology. The selected patients were subdivided into two groups: one including 137 patients with ulcer (98 primary and 39 post-thrombotic cases) and the other including 101 cases with no skin lesions (class C4). They were completely matched for sex, age and geographical origin with 280 healthy controls. A total of 518 subjects were PCR genotyped for HFE mutations (C282Y and H63D).

We assessed the prevalence of venous leg ulcer among carriers and wild type and the correspondent risk of ulceration by means of the odds ratio.
In patients affected by venous ulcers the prevalence of the C282Y polymorphic allele was significantly increased compared to healthy controls (51% vs 21%, \(P = 0.035 \)). C282Y mutation significantly increases the risk of ulcer in primary CVD by more than 4 fold. Eighty-six percent of carriers developed venous ulcer primary cases, whereas in wild type the distribution was about 50-50 (Figure 5).

As far as the H63D variant is concerned, further analysis in our patient population demonstrated a more precocious onset of the lesion in carriers of such polymorphism (age of onset: 56±12 years) compared to wild type (64±13 years) (\(P = 0.004 \)) (Figure 5). 34

The role of HFE mutations in facilitating venous leg ulcer development, demonstrates that, among the broad base of CVD patients, the high-risk minority could be identified in advance by means of a simple blood test that would act as a genetic screening device. Clinical practice could be strongly influenced by the results of the HFE genetic test; presence of the C282Y mutation would strengthen the indications and priorities for surgical correction of superficial venous insufficiency. Then, such preventive measures as elastic stockings, superficial venous surgery, and avoidance of iron-rich foods and dietary supplements, could be utilized in a targeted program of potentially great effectiveness. Thus, primary CVD could be treated more appropriately, before any lesions develop in those patients with a particular genetic haplotype. 57

The demonstration of gene susceptibility to the development of ulceration, merits further interpretation. We speculate different types of iron management in the macrophages in the affected tissue, in carriers and non-carriers of the HFE mutations, as well as a reduced efficiency of the above reported iron protective mechanisms.

For instance, hepcidin synthesis is regulated by HFE protein and the presence of mutant forms of HFE result in a decreased hepcidin response to an increased iron load. 58 This will result in an increased export of cellular iron.

From this point of view, several studies suggest that intracellular iron deposits in macrophages carrying the C282Y and the H63D mutations are less stable than those in the wild type. 59, 60 The mutated macrophages lose the ability to counteract the increased iron export from inside the cell. In addition, it has been demonstrated that the mutated phagocytes, after having taken up the senescent RBCs, release twice the amount of non-transferring-binding iron with respect to wild type. These already known effects of HFE mutations on human macrophages, if speculatively related to our findings, can lead us to assume that the mutated macrophages increase the possibility of generating free iron and free radicals, possibly leading to matrix breakdown and skin lesions.

Our speculations are confirmed by the accelerated date of onset of ulcerations that seem to radically modify the natural history of the disease, whose prevalence is advanced by almost one decade in the H63D carriers. Moreover, the demonstrated genetic susceptibility may explain the greater frequency of venous ulcers in Northern Europe as well as in those areas of the United States that have a high prevalence of Northern European descent. There is a decreased gradient of the HFE variants in Europe from the North to the Mediterranean basin, where venous ulcers are correspondingly less frequent than in Northern Europe, although CVD has the same prevalence. 55, 61

We demonstrated that in patients affected by severe CVD, the overlapping of local iron overload and the HFE mutation facilitates the occurrence of skin lesions and advances significantly the age of onset of the ulcerative disease. Leg iron overload is due to chronic venous stasis and is not apparently affected by the HFE mutation. In contrast, HFE mutation changes the stability of the intracelluar ferritin deposits as well as the efficiency of hepcidin regulation system, leading to increased iron efflux. We hypothesize that tissue lesions form from enhanced iron release and free radicals generation.

Finally, it could be hypothesized that the physiologic iron protective mechanisms affected by the HFE mutation, herein described, can be investigated in all diseases characterized by the combination of iron overload and inflammation, as well as the use of deliberate induction of iron deficiency as a treatment modality. 62

Perspectives

Several studies investigated the relationship between iron overload in the inflammatory areas with increased oxidative stress and other diseases,
such as atherosclerotic cardiovascular disease,65 neurological disease such as Alzheimer disease, Parkinson disease, Friedreich ataxia and other disorders,66–68 rheumatoid arthritis69 and infectious diseases.70–72 The relationship between increased iron stores and other chronic conditions, such as diabetes73–76 and cancer,77 have also generated much interest and will continue to be investigated in epidemiologic and mechanistic studies.78

However, differently from the above reported disease in which the increased iron stores appear not related to impaired venous function, a strong parallelism between multiple sclerosis (MS) and CVD has been recently shown.50 In MS, magnetic resonance imaging (MRI) venography and dissection demonstrate invariably a central vein oriented on the long axis of the inflammatory lesion,61 and both conditions are histologically characterized by perivascular iron deposition, and fibrin cuff.60 For such reason in the past a role for venous reflux in the complex MS had been hypothesized.64

Recent hemodynamic studies identified also in MS several abnormalities in cerebral venous return,51 including the impairment of the postural mechanism of selection of the extracranial venous out-flow route in MS patients, and its correlation with the disease disability score. In addition, a significant and unsuspected rate of reflux was detected in the extracranial veins of patients affected by MS as compared to healthy controls. The contribution of altered venous hemodynamics either to the impaired drainage of the inflammatory areas, or to the unexplained iron accumulation in the MS plaques could open new prospects in the understanding of the disease.80–82

On the other hand, CVD and MS share some key features, including activation of adhesion molecules, macrophage and T-cell infiltration.83 As in CVD, RBC extravasation, hemosiderin deposits, and iron-laden phagocytes in MS lesions suggest a pivotal role of iron in the inflammatory cascade. Hemosiderin may appear in the urine in both disorders. As described above, iron can activate MMPs, and downregulate TIMPs. Serum active MMP9/TIMP1 ratio is considered an indicator of ongoing MS inflammation. Finally, increased prevalence of CVD and MS is seen in hemochromatosis heterozygotes.

Trials of induced iron deficiency on lesion activity would help to define the roles of iron dependent tissue injury in both disorders. Such a trial would be especially feasible in CVD because of its easily accessible lesions; maybe, in a near future, we could evaluate leg iron stores by non invasive technique (e.g., MRI) and start a controlled iron depletion therapy in patients who have iron overload, with or without HFE mutation. A possible indication could be non-healing and/or recurrent venous leg ulcers, especially in post-thrombotic limbs.

References