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Abstract
Up to 18 million of individuals are infected by the protozoan parasite Trypanosoma cruzi in Latin America, one third of
whom will develop chronic Chagas disease cardiomyopathy (CCC) up to 30 years after infection. Cardiomyocyte
destruction is associated with a T cell-rich inflammatory infiltrate and fibrosis. The presence of such lesions in the relative
scarcity of parasites in the heart, suggested that CCC might be due, in part, to a postinfectious autoimmune process. Over
the last two decades, a significant amount of reports of autoimmune and molecular mimicry phenomena have been
described in CCC. The authors will review the evidence in support of an autoimmune basis for CCC pathogenesis
in humans and experimental animals, with a special emphasis on molecular mimicry as a fundamental mechanism of
autoimmunity.
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Introduction: Chagas disease

Chagas disease, named after the Brazilian physician

Carlos Chagas who first described the disease in 1909,

is endemic to Central and South America. The World

Health Organization estimates that 16–18 million

people are infected with Trypanosoma cruzi, with about

100 million people at risk in 21 countries [1,2]. T. cruzi

infection is a major cause of heart disease and

cardiovascular-related deaths in endemic areas, with

approximately 50,000 fatalities per year [3]. In certain

endemic areas, nearly 10% of all adult deaths are due

to chronic Chagas disease cardiomyopathy (CCC).

Clinical progression and survival are significantly

worse in CCC patients as compared with patients

with dilated cardiomyopathy (DCM) of other etiolo-

gies. In spite of recent advances in the control of the

vectorial and transfusional T. cruzi transmission [4],

Chagas is still a serious public health problem in Latin

America [5].

Despite the obvious clinical importance of CCC
and the efforts of many investigators during the past
century, the pathogenic mechanisms of CCC are still
poorly understood. There are at least six proposed
mechanisms for CCC pathogenesis including: (i)
microvascular spasm, (ii) ischemia, (iii) chronic
eosinophilia or neutrophilia, (iv) parasite-mediated
toxicity, (v) anti-T. cruzi immune responses to
parasites or parasite antigen that persist in the heart
and (vi) T. cruzi-induced autoimmunity (reviewed in
references [6–12]). Finally, the finding of kDNA
minicircles integrated into the nuclear genome of
some individuals with CCC suggests that alteration of
host cell gene expression might contribute to
pathogenesis [13]. The absence or near absence of
parasites from severely inflamed heart tissue initially
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suggested the autoimmunity hypothesis. The later

discovery of substantial autoimmune responses in both

humans and experimental animal models of disease

reinforced this idea. This review aims to summarize the

evidence for participation of autoimmunity in CCC

pathogenesis with particular emphasis on molecular

mimicry as a valid mechanism by which autoimmunity

is induced during T. cruzi infection.

T. cruzi life cycle and clinical infection

The life cycle of T. cruzi involves two intermediate

hosts (triatomine insects and mammals) and three

developmental stages: epimastigotes, trypomastigotes

and amastigotes [14]. The epimastigote forms

replicate in the midgut of the reduviid bug insect

vector and develop into infective, non-replicative

metacyclic trypomastigote forms. When the insects

feed on blood, they release their excreta containing

metacyclic trypomastigotes that subsequently pene-

trate the mammalian host through the bite wound or a

mucosal surface and initiate cellular invasion. Within

the host cells, the parasite differentiates into the

replicative amastigote form followed by further

differentiation to the bloodform trypomastigotes.

A fully parasitized cell will then rupture, releasing

bloodform trypomastigotes to the blood stream,

infecting adjacent cells, and disseminating infection

through the blood, where they can be taken up by a

new reduviid bug, thus completing the cycle. Reduviid

vector-associated transmission occurs in poor houses

in rural areas since the reduviid bug primarily resides

in crevices of walls and roofs of such makeshift

domiciles. Congenital transmission [15] as well as

limited cases of transmission by oral ingestion [16,17]

have been reported. Less common routes of parasite

transmission including blood transfusion [18–20],

organ transplantation [21] and laboratory accidents

can occur in non-endemic areas such as the United

States and Europe.

There are two stages of human Chagas disease: the

acute stage which occurs shortly after the infection

and the chronic stage which appears after a silent

period that may last many years. The acute stage of the

disease, generally seen in children, is characterized by

fever, lymphadenopathy and hepatosplenomegaly and

local inflammation at the site of infection. In most

cases, however, clinical symptoms are either absent or

mild and non-specific [5], making it difficult to

diagnose disease in the acute stage of infection.

Though death occurs in a small number of individuals

during the acute phase, T. cruzi establishes a lifelong,

low-grade infection and approximately 25% of

infected individuals [5] progress to a symptomatic

chronic phase some 10–30 years later, with irrevers-

ible damage to the heart, while ca. 5% develop

denervation of the smooth muscle layers of the

esophagus and colon, leading to severe dilatation

and dysfunction of these organs, while the other 70%

remain asymptomatic for life (ASY patients). Through

a number of possible mechanisms, all leading to

chronic cardiac inflammation, myocyte destruction

and fibrosis continue throughout the course of disease,

causing a gradual and irreversible decrease in cardiac

contractility. Approximately, 10% of all T. cruzi

infected patients will die from refractory, end-stage

heart failure or severe arrythmia [22,23]; CCC has a

shorter survival and worse prognosis than cardiomyo-

pahties of non-inflammatory etiology [24]. At present,

there is no effective treatment for CCC, other than

heart transplantation [25].

Differential clinical progression of the disease

occurs in the presence of this persistent infection,

and the development of CCC in only one third of

infected individuals points to an element of genetic

susceptibility. This is reinforced by the finding of

familial aggregation of cases of CCC [26]. It is thus

likely that gene polymorphisms affecting the immune

response could also influence the differential pro-

gression towards CCC among T. cruzi-infected

patients. However, genetic studies in humans have

been conflictive over the MHC region [27–31], and

have failed to disclose relevant genes leading to the

clinical dichotomy observed, which may have been

due to the genetic heterogeneity among the popu-

lations in different regions and countries under study.

Polymorphisms in genes encoding proteins associated

to the immune response have also been assessed for

association with CCC. The 59029A allele in

chemokine receptor CCR5, reported to induce

increased expression of the receptor, is associated to

asymptomatic patients in a Peruvian study [32],

suggesting a protective effect. Rodriguéz-Pérez et al.

have reported an association of the Tumor necrosis

factor-a promoter polymorphisms (TNF 2308A

promoter allele) with susceptibility to cardiomyopathy

in a Mexican population [33]. However, an analysis of

252 Brazilian CCC and ASY patients failed to confirm

such findings (ECN and JK, unpublished results); the

same lack of association was observed in a Peruvian

study on the 2238 TNF promoter polymorphic site

[34]. A Brazilian longitudinal study showed that

patients positive for the TNF 2308A or TNFa2

microsatellite allele 2 display a significantly shorter

survival time compared to those carrying other alleles

[35]. Association of CCC with polymorphisms in

other immune response genes is currently under

investigation.

Pathogenesis of heart-specific inflammatory

lesions in CCC: Role of local parasitism and

autoimmunity

During the course of Chagas disease, CD4þ and

CD8þT cells are primed and expanded with T. cruzi

antigens, and differentiate into memory-activated
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effector T cells. Chronic infection with T. cruzi

induces a systemic shift in the peripheral blood

mononuclear cell (PBMC) cytokine profile towards

Th1 cytokines with suppression of Th2 cytokines

[36–38]. The increased production of IFN-g in CCC

patients [38,39] as compared to ASY patients has

been linked to decreased production of IL-10 [38]. All

chronically T. cruzi-infected patients, even ASY

individuals, display increased plasma levels of TNF-

a. Furthermore, patients displaying severe CCC

present significantly higher plasma levels of TNF-

alpha [40]. The proinflammatory and Th1 cytokine

profile described above among chronically T. cruzi

infected patients may be related to the ability of

mucin-like glycoconjugates from persisting T. cruzi

infection to induce the production of IL-12 [41].

After differentiation, effector T cells recirculate and

enter the heart, where they mediate inflammation and

tissue injury [42]. Histopathological findings in CCC

heart lesions are consistent with inflammation and a

myocardial remodeling process: T cell and macro-

phage-rich myocarditis, hypertrophy and fibrosis with

heart fiber damage [43]. The T-cell rich inflammatory

infiltrate shows a 2:1 predominance of the CD8þ over

the CD4þT cell subset [44,45]. This may be due to

signaling though survival cytokine pathways (IL-7, IL-

15) [SGF, ECN, JK, unpublished data]. Increased

local expression of the cytokines IFN-g and TNF-a

[39,46], IL-6 and IL-4, [46] as well as HLA class I and

II molecules, and adhesion molecules were reported

[47]. Up-regulated production of IFN-g in T. cruzi-

infected IL-4 2 /2 mice enhanced late-phase myo-

carditis [48]. Real-time PCR analysis showed that the

gene expression levels of IFN-g -inducible chemo-

kines MCP-1, IP-10 and MIG, as well as chemokine

receptors CCR2, CXCR3, were selectively up-regu-

lated in CCC heart tissue; moreover, IFN-g and

MCP-1 were found to significantly increase the

expression of atrial natriuretic factor, a marker of

cardiomyocyte hypertrophy and heart failure, in

neonatal cardiomyocytes [49]. Together, these obser-

vations suggest that IFN-g -mediated chronic myo-

cardial inflammation could contribute to CCC

pathogenesis. Furthermore, cDNA microarray anal-

ysis of CCC and idiopathic DCM myocardium

showed significant changes in expression of genes

related to energy metabolism [49], which was also

observed in hearts of mice infected with T. cruzi

[50–52]. Proteomic analysis of CCC heart tissue has

confirmed some of these energy metabolism changes

(ECN, JK, et al. unpublished observations).

A direct role for cardiac parasitism in pathogenesis

was proposed after the identification of T. cruzi

antigen and DNA in CCC hearts by immunohisto-

chemical and PCR techniques [53–55]. However,

low-grade parasite persistence is universal in CCC

and ASY patients [56,57] and has been found not to

be linked to the development of CCC in clinical

follow-up studies of patient series [58]. Recent

studies, using either immunohistochemistry or in situ

hybridization to detect T. cruzi in cardiac tissue from

CCC patients, failed to disclose an association

between parasite presence and inflammatory lesions,

and T. cruzi DNA has been detected in hearts of both

CCC and ASY individuals [59–62]. This suggests

that T. cruzi parasitosis by itself is apparently unable to

evoke sufficient heart damage to cause DCM. Thus,

some other factor must be operating along with

parasite persistence, to lead a subgroup of T. cruzi-

infected individuals towards heart damage.

The lack of association between high parasitemia

and tissue pathology, considered together with the

scarcity of T. cruzi in CCC heart lesions [59,60,63,64]

prompted early investigators [65] to suggest that the

lymphomononuclear cell infiltrate in the heart

participates in delayed-type hypersensitivity (DTH)

responses towards a tissue-specific heart component

as a result of chronic T. cruzi infection, the so-called

autoimmune hypothesis of pathogenesis. It should be

emphasized that the notion that autoimmunity seems

to play a pivotal role for myocardial damage is not

incompatible with a role for parasite persistence, as

shown by the identification of autoimmune and T.

cruzi-specific T cell responses in CCC heart tissue

[66,67] (Table I).

The three mechanisms described below have been

demonstrated in Chagas disease patients or experi-

mental animals and could generate experienced,

effector autoreactive T or B cells capable of inducing

tissue damage. Antigen exposure secondary to tissue

damage, followed by sensitization in an appropriate

inflammatory environment (i.e. bystander activation);

molecular mimicry between parasite and host antigens

(Table II) and polyclonal activation leading to

autoantibody production [68,69].

Animal models of CCC

A variety of animal models of Chagas disease have

been employed in order to address a number of issues

including mortality, immune function, cardiac patho-

logy, chemotherapeutic agents and autoimmunity.

Among the animals analyzed have been dogs [70,71],

monkeys, rabbits [72], hamsters [73–75] and more

commonly rats [76–81] and mice [82–91]. A number

of parasite strains and clones (e.g. Silvio, Brazil,

Tulahuen, Y, Colombian, Corpus Christ, etc.) have

been used to infect a variety of strains of mice (e.g.

BALB/c, C3H, A/J, DBA/2, etc.). While no single

parasite-mouse combination recapitulates the entire

spectrum of human infection—for instance, experi-

mentally infected mice seldom develop end-stage

heart failure during chronic infection—each combi-

nation does seem to reflect some particular aspect of

the disease, including acute or chronic myocarditis

and the ASY infection. One of the critical points in
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validating autoimmunity and molecular mimicry in

Chagas disease is the use of animal models that

reproduce most components of human CCC. The

most common models of T. cruzi infection-induced

autoimmunity today are: (i) BALB/c mice infected

with the Colombian strain for a 150–240 days [92] for

the chronic phase of infection, (ii) C3H mice infected

with the Silvio X-10/4 clone and (ii) A/J mice infected

with the Brazil strain for 7–30 days [93] for the

acute phase, though T. cruzi related autoreactivity

and mimicry have been investigated in other systems

as well.

Experimental Chagas disease: Autoimmunity

During T. cruzi infection, mice can display antibodies

specific for various autoantigens contained in cardiac,

nervous and other tissues (Table I). Anti-sera from

infected mice has also been found to react with heart

homogenate [93] including cardiac myosin, cardiac C

protein (unconfirmed) and the intermediate filament

protein desmin [94]. Sera from T. cruzi infected

animals were reactive against nervous system struc-

tures (sciatic nerve, spinal cord, brain) [95] and have

also caused alterations in sciatic nerve action

potentials when injected into naı̈ve animals [96].

While autoantibodies specific for tubulin, actin and

myosin are produced during acute murine infection

[93,97], lytic autoantibodies are apparently produced

only during chronic infection [98,99].

Several lines of evidence support a role for cellular

autoimmunity directed at heart-specific autoantigens

in experimental chronic Chagas disease as well.

CD4þT cells from chronically T. cruzi-infected mice

from BALB/c or CBA mice proliferate in response to

cardiac myosin, but not cardiac actin [100]. In line

with these findings, T cells from Brazil strain infected

129Sv mice also displayed in vitro proliferation upon

stimulation with cardiac myosin (DE, unpublished

data). Splenocytes harvested from chronically infected

mice elicit lysis of syngeneic myoblasts in vitro and

induce electrocardiographic abnormalities when

transferred to a naı̈ve recipient [84]. Perhaps, the

most compelling finding was that CD4þT cells from

chronically infected mice mediated the rejection of

normal syngeneic newborn hearts transplanted into

the ear of recipients [101]. On the other hand, an

analogous model system but using a different parasite-

mouse strain combination showed that parasites were

systematically present in the heart grafts undergoing

rejection [102], raising questions of whether the

rejection was strictly independent of the parasite.

Pontes de Carvalho et al. observed less intense

inflammation in heart tissue from T. cruzi-infected

mice that were tolerized to cardiac myosin-rich

antigen by simultaneous administration of anti-CD4

antibody prior to infection with T. cruzi as compared

to control mice receiving only anti-CD4 treatment

[92].

Experimental Chagas disease: Molecular

mimicry

The discovery of mimicry between antigens of T. cruzi

and host in both human CCC and experimental

models of disease provides arguable evidence that

autoimmunity evolves as a result of parasite-specific

immune responses rather than general tissue damage.

Benoist and Mathis have proposed stringent criteria

to distinguish molecular mimicry from bystander

activation [103], which can be summarized as:

(i) relationship between a specific microbial infection

and a specific inflammatory state, (ii) identification of

responsible microbial and self-epitope capable of

Table I. Host proteins to which autoimmunity develops during T. cruzi infection.

Cell, molecule or substance Host* Immune mediator Reference(s)

Cardiac myosin M CD4 þ T cells [100]

Cardiac myosin, p150 M Serum IgG [94]

Heart homogenate M T cells [101,182,183]

43 kDa muscle glycoprotein M Serum IgG [146]

Nervous Tissue, heart and skeletal muscle M Serum IgG [147]

2nd extracellular loop, M2 cholinergic receptor M Serum IgG [184]

2nd extracellular loop, b1 adrenergic receptor M Serum IgG [185]

M2 cholinergic receptor H Serum IgG [140]

M2 cholinergic receptor H Serum IgG [135,136,186]

M2 muscarinic acethylcoline receptor H Serum IgG [187,188]

2nd extracellular loop, M2 cholinergic receptor H Serum IgG [137]

Neurons H Serum IgG [127]

Sciatic nerve homogenate H Serum IgG [148]

Small nuclear ribonucleoprotein H Serum IgG [149]

Cardiac myocytes H Complement (C5–C9 complex) [152]

Heart homogenate H T cells [153,154]

Cardiac myocytes H T cells [157]

Cardiac myocytes Rb T cells [189]

* M, mouse; H, human; Rb, rabbit.
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eliciting crossreactive T cell responses, (iii) causal

relationship between the existence of T cells elicited

by the microbe and responsive to both microbe and

self-epitopes and the particular autoimmune disease.

A number of crossreactive antigens with both

cardiac and non-cardiac specificity have been ident-

ified, primarily by serologic approaches, in mouse

models of chronic Chagas disease (Table II).

Lymphocytes from T. cruzi protein extract-immunized

animals proliferated in response to MBP stimulation,

and vice versa [104], and two regions of the MBP

molecule were identified as crossreactive with parasite

antigen. Passive transfer of a CD4þT cell line

recognizing heart and T. cruzi antigens derived from

a chronically T. cruzi infected mouse to BALB/c nude

mice immunized with cardiac antigen caused

intense heart inflammation [105]. T and B cells from

T. cruzi-infected mice recognize peptides from the

novel autoantigen Cha, which contains regions of

homology with different T. cruzi proteins, SAPA and a

36 kDa putative gene product. Splenocytes taken from

infected animals proliferated to Cha peptide and those

taken from animals immunized with recombinant Cha

protein recognized T. cruzi SAPA peptide, suggesting

the existence of T and B cell crossreactivity between

T. cruzi and host antigens. Passive transfer of T cells

appeared to induce heart lesions similar to those

resulting from T. cruzi infection, but no control was

performed for contamination by T. cruzi. However,

definite proof of T cell crossreactivity can only be

demonstrated with T cell clones. Another notable

finding was the development of autoreactive anti-heart

antibodies and heart functional alterations following

the immunization of BALB/c mice with T. cruzi

ribosomal P1 and P2 protein synthetic peptide. In this

case of mimicry, the peptide sequence that corre-

sponds to the C-terminal region of T. cruzi ribosomal

proteins differs from the eukaryotic ribosomal P

consensus sequence only in a non-conservative amino

acid substitution [106].

Several investigators have described cardiac myosin

as a major antigen of heart-specific autoimmunity in

infection-induced disease models [107–111], includ-

ing murine and human Chagas disease [94,100,112–

115], as well as autoimmune myocarditis induced with

self-protein immunization [116–122]. The ability of

this antigen to induce myocarditis upon immuniz-

ation, coupled with its repeated appearance as an

autoantigen in infectious disease models has made it a

target of investigation for molecular mimicry in CCC.

Immunization of BALB/c mice with T. cruzi antigen,

cruzipain, induced autoantibodies to both skeletal and

cardiac myosin, leading to muscle damage and heart

conduction abnormalities [114,123]. Cruzipain immu-

nization also induced antibodies reactive to the cardiac

muscarinic acetylcholine receptor (mAChR), causing a

decrease in myocardial contractility characteristic of

CCC [124]. In addition, a monoclonal antibody

raised against solubilized T. cruzi cytoskeletons cross-

reactively recognized a cardiac myosin tail epitope

(95 kDa) [115].

The A/J mice infected with Brazil T. cruzi strain has

consistently provided evidence of cardiac myosin-

specific autoimmunity in forms of both autoantibody

production as well as cellular immunity [93]. Infection

or immunization of mice with T. cruzi lysate induced

myosin-specific autoantibody production and DTH

even though immunization with T. cruzi lysate failed to

induce heart inflammation. Interestingly, mice immu-

nized with cardiac myosin developed T. cruzi-specific

DTH and antibodies [93,125]. Furthermore, myosin

tolerization did suppress T. cruzi DTH and conversely,

T. cruzi tolerization (using parasite lysate) suppressed

myosin DTH [125]. The induction of bidirectional,

crossreactive immunity between T. cruzi and cardiac

myosin was shown to be specific since such cross-

reactivity did not occur in Leishmania protein extract

or skeletal myosin immunizations. Moreover, the fact

that C57BL/6 mice failed to develop cardiac myosin

DTH upon immunization with T. cruzi extract

indicated that the ability to make myosin autoimmu-

nity was immunogenetically restricted. However,

T. cruzi-induced myocarditis was not affected by

myosin tolerization by the antigen-coupled splenocyte

method [125], suggesting that other mechanisms

contribute to tissue inflammation, perhaps including

autoimmunity to other cardiac antigens. Since the

peripheral immune tolerization method was effective

in preventing autoimmune myocarditis, it will be

interesting to see whether tolerization to T. cruzi lysate

has the ability to inhibit inflammation after myosin

immunization due to their crossreactive nature

Equally interesting will be to test the efficacy of

tolerization using infected heart homogenate, which

contains both parasite and heart antigens.

Human Chagas disease: Autoimmunity

In human Chagas disease, sera from over 80% of

patients contained anti-neuron autoantibodies, and

there is a net loss of neurons from the autonomic

system [126,127] (Table I), which may be linked to

the autonomic nervous system dysfunction observed

in symptomatic and asymptomatic patients [128,129].

Functional antibodies against adrenergic G-protein-

coupled and muscarinic (M2) cholinergic receptors

were found in serum from Chagas’ disease patients

[130–140] (Tables I and II), as described in idiopathic

DCM [141,142]. However, it has been shown that the

presence of such functionally active anti-receptor

antibodies does not correlate with heart symptoma-

tology but rather with dysfunction of the autonomic

nervous system [137].

Sera from Chagas disease patients display autoanti-

bodies against small ribonucleoproteins and the Cha

human autoantigen, as well as its major B cell epitope
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Cha (peptide R3) [143,144]. Taken together, these

results suggest that functional autoantibodies play a

role in the pathogenesis of Chagas disease. On the

other hand, the pathogenic role of autoantibodies that

do not have functional activity or fail to be associated

to disease remains to be elucidated [127,145–150].

Autoantibodies against galectin-1 (Gal-1), a human

cardiac protein, are correlated with the severity of

cardiac damage in CCC [151]. Complement mem-

brane attack complexes have been identified in the

membranes of cardiomyocytes from Chagas disease

cardiomyopathy patients [152].

Regarding cell-mediated autoimmunity, early

studies have shown that cardiac tissue homogenate

induced lymphokine production [153,154] but not

proliferative responses among CCC peripheral blood

T cells [155,156]. Non-infected cardiomyocytes were

targets of cytotoxicity by CCC PBMC [157]. More

recent studies have identified crossreactive responses

to antigens in molecular mimicry, which will be

discussed in the next section.

Human Chagas disease: Molecular mimicry

Several reports of immunological crossreactivity/anti-

genic mimicry between defined T. cruzi and host self-

antigens have been described (Table II). Given the

evolutionary conservation of primary sequences of

many key structural proteins or enzymes from protists

to humans, it is not surprising that this kind of

crossreactive antigens can be detected [158–165]. In

some cases, evidence for a pathogenic role of such

crossreactive immune responses comes from func-

tional activity or their association with CCC.

Evidence of crossreactivity between T. cruzi

ribosomal P0, and the P1 and P2 proteins and

human ribosomal P protein, or the b 1-adrenergic

receptor, has also been shown [139,165,166]. A recent

study demonstrated that peptides from ribosomal

proteins P0 and P2b bearing acidic epitopes or the

second extracellular portion of the muscarinic

acetylcholine receptor could block antibodies from

CCC sera with muscarinic activity [167]. It has been

shown that affinity-selected anti-human ventricular

cardiac myosin heavy chain antibodies from Chagas

disease patients’ sera specifically recognized a defined

T. cruzi antigen [168], the recombinant tandemly

repetitive protein B13 [169]. Cardiac myosin-B13

crossreactive antibodies (116/140 kDa) were present

in sera from 100% of CCC patients but only 14% of

ASY patients [168]; sera from 100% of both CCC and

ASY patients recognized cardiac myosin.

CD4þT cell clones derived from a biopsy from CCC

patient and expanded in the absence of exogenous

antigen, crossreactively recognized cardiac (but not

skeletal) myosin heavy chain and T. cruzi protein B13

[66]. However, none of the 17 tested clones responded

to the immunodominant recombinant T. cruzi

antigens CRA, FRA, JL5 or B12 or to T. cruzi

trypomastigote lysate [66]. In vitro sensitization of

peripheral lymphocytes from a T. cruzi seronegative

individual with B13 protein elicits cardiac myosin-

crossreactive T cell clones [170]. Full characterization

of B13 T cell recognition was performed and it was

found that T cell recognition of B13 protein is

restricted by HLA-DQ7, -DR1 and -DR2. One of the

variant B13 peptides, S15.4 (KPPPFGQAAAG-

DKPP) was preferentially recognized by CCC as

compared to ASY HLA-DQ7þ patients [171].

Molecular modelling indicated that variant positions

in B13 peptides complexed to HLA-DQ7 were

exposed to contact with TCR [171]. In order to

identify B13-crossreactive epitopes in cardiac myosin

heavy chain, we obtained a T cell clone sensitized

against B13 peptide S15.4 from a seronegative

individual. This T cell clone crossreactively recognized

one partially homologous peptide (EMAVFGAAA-

PYLRKS) along with 12 other peptides with low

homology with the B13 peptide S15.4 [172]. Taken

together, the identification of T cell crossreactive

epitopes in B13 and cardiac myosin fulfills one of

Benoist’s criteria for molecular mimicry. Further-

more, the intramolecular degenerate T cell molecular

mimicry involving 12 low-homology myosin epitopes

may be an additional mechanism for amplification of

anti-cardiac myosin immunity at the T cell clonal level,

which may play a role in the myocarditis of CCC.

Although, several reports have cited myosin-specific

autoimmunity in the context of CCC [66,168,170–

172], it is important to note that levels of anti-myosin

antibodies are also significantly increased in patients

with heart damage from infectious and non-infectious

causes [173,174] suggesting that the antigen exposure

by itself could cause the level of anti-myosin immunity

to rise in CCC. However, the finding of molecular

mimicry indicates that it is antigen receptor cross-

reactivity, rather than bystander activation, that causes

of anti-myosin autoimmunity in human CCC.

Concluding remarks

Chagas disease is a low-grade, systemic chronic

infection with documented autoimmune phenomena.

Establishing whether autoimmunity and molecular

mimicry are causes or consequences of heart tissue

damage in human and experimental models of CCC is

key to understanding their roles in CCC pathogenesis.

Inasmuch as some authors refuse to classify diseases

associated to a known infectious agent as auto-

immune, [175,176], the recent identification of

persistent virus infection in patients with bona fide

human autoimmune diseases like multiple sclerosis

[177] and insulin-dependent diabetes mellitus [178]

may indicate that this might be a common theme

among such diseases. When confronting the available

data with the criteria of autoimmune disease described
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by different authors [103,179], it can be seen that

CCC fulfills several of them. The identification of T

cell crossreactive antigens (Table II), with reproduc-

tion of pathobiological changes by passive transfer in

murine models in the absence of T. cruzi parasites

[101,105], and the amelioration of inflammation as a

consequence of tolerance induction to myocardial

antigens [92] together with the induction of auto-

immune disease after immunization with cardiac

myosin [117], the major candidate self antigen in

Chagas disease cardiomyopathy, have all been shown.

The isolation of cardiac myosin-autoreactive T cells in

molecular mimicry with T. cruzi B13 protein from

affected tissue [66] is considered important indirect

evidence. TCR Va region usage restriction [180] is

considered circumstantial supporting evidence

according to Rose and Bona’s criteria [181]. Together

with the demonstration that in vitro immunization

with B13 protein or B13 epitopes elicits T cell clones

crossreactive with cardiac myosin [170] or its epitopes

[172], these results suggest a major role for

autoimmunity in CCC pathogenesis. However,

criteria were individually established with distinct

experimental approaches in murine models and

patients. What is still missing for the fulfilment of all

criteria in a single model is the transfer of tissue lesions

by T cell clones crossreactive to known host and

parasite epitopes, or a successful trial of tolerance to

cardiac antigens among patients. Finally, a direct test

of the relevance of B13—or any other parasite

antigen—molecular mimicry might be achieved

though the use of B13-null parasites for experimental

infection. Such a parasite line could permit the direct

testing of this molecule in the generation of myosin

autoimmunity. The failure of this parasite line to

induce myosin autoimmunity and/or myocarditis

unless completed with B13 in trans would directly

imply molecular mimicry in myosin autoimmunity

and CCC pathogenesis.
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[31] Faé KC, Drigo SA, Cunha-Neto E, Ianni B, Mady C, Kalil J,

Goldberg AC. HLA and b-myosin heavy chain do not

influence susceptibility to Chagas’ disease cardiomyopathy.

Microbes Infect 2000;2:745–751.

[32] Calzada JE, Nieto A, López-Nevot MA, Martı́n J. Lack of

association between NRAMP1 gene polymorphisms and

Trypanosoma cruzi infection. Tissue Antigens 2001;57:

353–357.
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